DOI QR코드

DOI QR Code

Highly sensitive and selective NO2 gas sensor at low temperature based on SnO2 nanowire network

SnO2 나노와이어를 이용한 저온동작 고감도 고선택성 NO2 가스센서

  • Kim, Yoojong (School of Electronics Engineering, Busan National Unversity) ;
  • Bak, So-Young (School of Electronics Engineering, Busan National Unversity) ;
  • Lee, Jeongseok (School of Electronics Engineering, Busan National Unversity) ;
  • Lee, Se-Hyeong (School of Electronics Engineering, Busan National Unversity) ;
  • Woo, Kyoungwan (School of Electronics Engineering, Busan National Unversity) ;
  • Lee, Sanghyun (Department of Smart Interdisciplinary Engineering, Pusan National University) ;
  • Yi, Moonsuk (School of Electronics Engineering, Busan National Unversity)
  • 김유종 (부산대학교 전자전기컴퓨터공학부) ;
  • 박소영 (부산대학교 전자전기컴퓨터공학부) ;
  • 이정석 (부산대학교 전자전기컴퓨터공학부) ;
  • 이세형 (부산대학교 전자전기컴퓨터공학부) ;
  • 우경완 (부산대학교 전자전기컴퓨터공학부) ;
  • 이상현 (부산대학교 스마트 융합공학과) ;
  • 이문석 (부산대학교 전자전기컴퓨터공학부)
  • Received : 2021.05.11
  • Accepted : 2021.05.28
  • Published : 2021.05.31

Abstract

In this paper, methods for improving the sensitivity of gas sensors to NO2 gas are presented. A gas sensor was fabricated based on an SnO2 nanowire network using the vapor-phase-growth method. In the gas sensor, the Au electrode was replaced with a fluorinedoped tin oxide (FTO) electrode, to achieve high sensitivity at low temperatures and concentrations. The gas sensor with the FTO electrode was more sensitive to NO2 gas than the sensor with the Au electrode: notably, both sensors were based on typical SnO2 nanowire network. When the Au electrode was replaced by the FTO electrode, the sensitivity improved, as the contact resistance decreased and the surface-to-volume ratio increased. The morphological features of the fabricated gas sensor were characterized in detail via field-emission scanning electron microscopy and X-ray diffraction analysis.

Keywords

Acknowledgement

이 과제는 부산대학교 교수국외장기파견 지원비에 의하여 연구되었음.

References

  1. A. Dey, "Semiconductor metal oxide gas sensors: A review", Mater. Sci. Eng B, Vol. 229, No. 1, pp. 206-217, 2018. https://doi.org/10.1016/j.mseb.2017.12.036
  2. J. P. Cheng, J. Wang, Q. Q. Li, H. G. Liu, and Y. Li, "Review of recent developments in tin dioxide composites for gas sensing application", J. Ind. Eng. Chem, Vol. 44, No. 1, pp. 1-22, 2016. https://doi.org/10.1016/j.jiec.2016.08.008
  3. Y. O. Khaniabadi, G. Goudarzi, S. M. Daryanoosh, A. Borgini, A. Tittarelli, and A. D. Marco, "Exposure to PM10, NO2, and O3 impacts on human health", Environ. Sci. Pollut. Res, Vol. 24, No. 3, pp. 2781-2789, 2017. https://doi.org/10.1007/s11356-016-8038-6
  4. J. -M. Ducere, A. Hemeryck, A. Esteve, M. D. Rouhani, G. Landa, P. Menini, C. Tropis, A. Maisonnat, P. Fau, and B. Chaudret, "A Computational Chemist Approach to Gas Sensors: Modeling the Response of SnO2 to CO, O2, and H2O Gases", J. Comput. Chem, Vol. 33, No. 3, pp. 247-258, 2011. https://doi.org/10.1002/jcc.21959
  5. S. Maeng, S. W. Kim, D. H. Lee, S. E. Moon, K. C. Kim, and A. Maiti, "SnO2 Nanoslab as NO2 sensor: Identification of the NO2 Sensing Mechanism on a SnO2 surface", Appl. Mater. Interfaces, Vol. 6, No. 1, pp. 357-363, 2014. https://doi.org/10.1021/am404397f
  6. R. Kumar, O. AI-Dossary, G. Kumar and, A.Umar, "Zinc Oxide Nanostructures for NO2 Gas-Sensor Applications: A Review", Nanomicor Lett, Vol. 7, No. 2, pp. 97-120, 2015.
  7. M. Batzill, "Surface Science Studies of Gas Sensing Materials: SnO2", Sensors, Vol. 6, No. 10, pp. 1345-1366, 2006. https://doi.org/10.3390/s6101345
  8. E. Leblanc, L. Perier-Camby, G. Thomas, M. Primet, and P. Gelin, "NOx adsorption onto dehydroxylated or hydroxylated tin dioxide surface. Application to SnO2-based sensors", Sens. Actuators B Chem, Vol. 62, No.1, pp. 67-72, 2000. https://doi.org/10.1016/S0925-4005(99)00376-7
  9. D. R. Miller, S. A. Akbar, and P. A. Morris, "Nanoscale metal oxide-based heterojunctions for gas sensing: A review", Sens. Actuators B Chem, Vol. 204, No. 1, pp. 250-272, 2014. https://doi.org/10.1016/j.snb.2014.07.074
  10. H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview", Sens. Actuators B Chem, Vol. 192, No. 1, pp. 607-627, 2014. https://doi.org/10.1016/j.snb.2013.11.005
  11. M. Tonezzer and N. V. Hieu, "Size-dependent response of single-nanowire gas sensors", Sens. Actuators B Chem, Vol. 163, No. 1, pp.146-152, 2012. https://doi.org/10.1016/j.snb.2012.01.022
  12. S. Li, X. Zhang, B. Yan, and T. Yu, "Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method", Nanotechnology, Vol. 20, No. 49, pp. 495604, 2009. https://doi.org/10.1088/0957-4484/20/49/495604
  13. Y. Takeshi, N. Kazuki, T. Hidekazu, and K. Tomoji, "Mechanism of critical catalyst size effect on MgO nanowire growth by pulsed laser deposition", J. Appl. Phys, Vol. 104, No.1, pp. 016101-016103, 2008. https://doi.org/10.1063/1.2937194
  14. M. Epifani, J. D. Prades, E. Comini, E. Pellicer, M. Avella, P. Siciliano, G. Faglia, A. Cirera, R. Scotti, F. Morazzoni, and J. R. Morante, "The Role of Surface Oxygen Vacancies in the NO2 sensing properties of SnO2 Nanocrystals", J. Phys. Chem. C, Vol. 112, No. 49, pp. 19540-19546, 2008. https://doi.org/10.1021/jp804916g
  15. F. Schipani, D. R. Miller, M. A. Ponce, C. M. Aldao, S. A. Akbar, P. A. Morris, and J. C. Xu, "Conduction mechanisms in SnO2 single-nanowire gas sensors: An impedance spectroscopy study", Sens. Actuators B Chem, Vol. 241, No. 1, pp. 99-108, 2017. https://doi.org/10.1016/j.snb.2016.10.061
  16. M. Tonezzer, "Selective gas sensor based on one single SnO2 nanowire", Sens. Actuators B Chem, Vol. 288, No. 1, pp. 53-59, 2019. https://doi.org/10.1016/j.snb.2019.02.096
  17. F. Hernandez-Ramirez, A. Tarancon, O. Casals, J. Arbiol, A. Romano-Rodriguez, and J. R. Morante, "High response and stability in CO and humidity measures using a single SnO2 nanowire", Sens. Actuators B Chem, Vol. 121, No. 1, pp. 3-17, 2007. https://doi.org/10.1016/j.snb.2006.09.015
  18. T. Nagata, O. Bierwagen, M. E. White, M. -Y. Tsai, and J. S. Speck, "Study of the Au Schottky contact formation on oxygen plasma treated n-type SnO2 (101) thin films", J. Appl. Phys, Vol. 107, No. 3, pp. 033707(1)-033707(7), 2010. https://doi.org/10.1063/1.3298467