Acknowledgement
This work was supported by National Key R&D Program of China Grant (2018YFA0900500), Major Basic Research Program of Shandong Provincial Natural Science Foundation (ZR2019ZD19), the Key Research and Development Project of Shandong Province (2019JZZY020223 and 2019JZZY020807), the Young Scholars Program of Shandong University (YSPSDU) (to G. L.), and the China/Shandong University International Postdoctoral Exchange Program.
References
- Kumar A, Gautam A, Dutt D. 2016. Biotechnological transformation of lignocellulosic biomass in to industrial products: an overview. Adv. Biosci. Biotechnol. 07: 149-168. https://doi.org/10.4236/abb.2016.73014
- Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. 2015. Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnol. Adv. 33: 1091-1107. https://doi.org/10.1016/j.biotechadv.2014.12.002
- Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804-807. https://doi.org/10.1126/science.1137016
- Balan V. 2014. Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol. 2014: 463074. https://doi.org/10.1155/2014/463074
- Karimi K, Taherzadeh MJ. 2016. A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresour. Technol. 200: 1008-1018. https://doi.org/10.1016/j.biortech.2015.11.022
- Liu G, Qin Y, Li Z, Qu Y. 2013. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era. Biotechnol. Adv. 31: 962-975. https://doi.org/10.1016/j.biotechadv.2013.03.001
- Burchard W, Schulz L. 1995. Functionality of the β(1,4) glycosidic linkage in polysaccharides. Macromol. Symp. 99: 57-69. https://doi.org/10.1002/masy.19950990108
- Warden AC, Little BA, Haritos VS. 2011. A cellular automaton model of crystalline cellulose hydrolysis by cellulases. Biotechnol. Biofuels 4: 39. https://doi.org/10.1186/1754-6834-4-39
- Percival Zhang YH, Himmel ME, Mielenz JR. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 24: 452-481. https://doi.org/10.1016/j.biotechadv.2006.03.003
- Hemsworth GR, Johnston EM, Davies GJ, Walton PH. 2015. Lytic polysaccharide monooxygenases in biomass conversion. Trends Biotechnol. 33: 747-761. https://doi.org/10.1016/j.tibtech.2015.09.006
- Merino ST, Cherry J. 2007. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol.108: 95-120.
- Voutilainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J, et al. 2008. Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol. Bioeng. 101: 515-528. https://doi.org/10.1002/bit.21940
- Taylor LE, Knott BC, Baker JO, Alahuhta PM, Hobdey SE, Linger JG, et al. 2018. Engineering enhanced cellobiohydrolase activity. Nat. Commun. 9: 1186. https://doi.org/10.1038/s41467-018-03501-8
- Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, et al. 2011. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol. 29: 922-927. https://doi.org/10.1038/nbt.1976
- Morozova VV, Gusakov AV, Andrianov RM, Pravilnikov AG, Osipov DO, Sinitsyn AP. 2010. Cellulases of Penicillium verruculosum. Biotechnol. J. 5: 871-880. https://doi.org/10.1002/biot.201000050
- Linger JG, Taylor LE, Baker JO, Vander Wall T, Hobdey SE, Podkaminer K, et al. 2015. A constitutive expression system for glycosyl hydrolase family 7 cellobiohydrolases in Hypocrea jecorina. Biotechnol. Biofuels 8: 45. https://doi.org/10.1186/s13068-015-0230-2
- Ma S, Preims M, Piumi F, Kappel L, Seiboth B, Record E, et al. 2017. Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems. Microb. Cell Fact. 16: 37. https://doi.org/10.1186/s12934-017-0653-5
- Dillon AJ, Bettio M, Pozzan FG, Andrighetti T, Camassola M. 2011. A new Penicillium echinulatum strain with faster cellulase secretion obtained using hydrogen peroxide mutagenesis and screening with 2-deoxyglucose. J. Appl. Microbiol. 111: 48-53. https://doi.org/10.1111/j.1365-2672.2011.05026.x
- Gusakov AV. 2011. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol. 29: 419-425. https://doi.org/10.1016/j.tibtech.2011.04.004
- Zhang Z, Liu J-L, Lan J-Y, Duan C-J, Ma Q-S, Feng J-X. 2014. Predominance of Trichoderma and Penicillium in cellulolytic aerobic filamentous fungi from subtropical and tropical forests in China, and their use in finding highly efficient β-glucosidase. Biotechnol. Biofuels 7: 107. https://doi.org/10.1186/1754-6834-7-107
- Arnthong J, Siamphan C, Chuaseeharonnachai C, Boonyuen N, Suwannarangsee S. 2020. Towards a miniaturized culture screening for cellulolytic fungi and their agricultural lignocellulosic degradation. J. Microbiol. Biotechnol. 30: 1670-1679. https://doi.org/10.4014/jmb.2007.07005
- Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, et al. 2013. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One 8: e55185. https://doi.org/10.1371/journal.pone.0055185
- Liu K, Lin X, Yue J, Li X, Fang X, Zhu M, et al. 2010. High concentration ethanol production from corncob residues by fed-batch strategy. Bioresour. Technol. 101: 4952-4958. https://doi.org/10.1016/j.biortech.2009.11.013
- Du J, Zhang X, Li X, Zhao J, Liu G, Gao B, et al. 2018. The cellulose binding region in Trichoderma reesei cellobiohydrolase I has a higher capacity in improving crystalline cellulose degradation than that of Penicillium oxalicum. Bioresour. Technol. 266: 19-25. https://doi.org/10.1016/j.biortech.2018.06.050
- Li S, Li G, Zhang L, Zhou Z, Han B, Hou W, et al. 2013. A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl. Energy 102: 260-265. https://doi.org/10.1016/j.apenergy.2012.09.060
- Song W, Han X, Qian Y, Liu G, Yao G, Zhong Y, et al. 2016. Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnol. Biofuels 9: 68. https://doi.org/10.1186/s13068-016-0477-2
- Qin Y, Zheng K, Liu G, Chen M, Qu Y. 2013. Improved cellulolytic efficacy in Penicilium decumbens via heterologous expression of Hypocrea jecorina endoglucanase II. Arch. Biol. Sci. 65: 305-314. https://doi.org/10.2298/ABS1301305Q
- Gao L, Li Z, Xia C, Qu Y, Liu M, Yang P, et al. 2017. Combining manipulation of transcription factors and overexpression of the target genes to enhance lignocellulolytic enzyme production in Penicillium oxalicum. Biotechnol. Biofuels 10: 100. https://doi.org/10.1186/s13068-017-0783-3
- Brown NA, Ries LNA, Goldman GH. 2014. How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion. Fungal Genet. Biol. 72: 48-63. https://doi.org/10.1016/j.fgb.2014.06.012
- Hu Y, Xue H, Liu G, Song X, Qu Y. 2015. Efficient production and evaluation of lignocellulolytic enzymes using a constitutive protein expression system in Penicillium oxalicum. J. Ind. Microbiol. Biotechnol. 42: 877-887. https://doi.org/10.1007/s10295-015-1607-8
- Hong J, Tamaki H, Yamamoto K, Kumagai H. 2003. Cloning of a gene encoding a thermo-stable endo-b-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast. Biotechnol. Lett. 25: 657-661. https://doi.org/10.1023/A:1023072311980
- Szijarto N, Horan E, Zhang J, Puranen T, Siika-aho M, Viikari L. 2011. Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw. Biotechnol. Biofuels 4: 2. https://doi.org/10.1186/1754-6834-4-2
- Vaaje-Kolstad G, Forsberg Z, Loose JS, Bissaro B, Eijsink VG. 2017. Structural diversity of lytic polysaccharide monooxygenases. Curr. Opin. Struct. Biol. 44: 67-76. https://doi.org/10.1016/j.sbi.2016.12.012
- Gaber Y, Rashad B, Hussein R, Abdelgawad M, Ali NS, Dishisha T, et al. 2020. Heterologous expression of lytic polysaccharide monooxygenases (LPMOs). Biotechnol. Adv. 43: 107583. https://doi.org/10.1016/j.biotechadv.2020.107583
- Greene ER, Himmel ME, Beckham GT, Tan ZP. 2015. Glycosylation of cellulases: Engineering better enzymes for biofuels. Adv. Carbohydr. Chem. Biochem. 72: 63-112. https://doi.org/10.1016/bs.accb.2015.08.001
- Jeoh T, Michener W, Himmel ME, Decker SR, Adney WS. 2008. Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol. Biofuels 1: 10. https://doi.org/10.1186/1754-6834-1-10
- Stals I, Sandra K, Geysens S, Contreras R, Van Beeumen J, Claeyssens M. 2004. Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14: 713-724. https://doi.org/10.1093/glycob/cwh080
- Fagerstam LG, Pettersson LG. 1980. The 1.4-β-glucan cellobiohydrolases of Trichoderma reesei QM 9414. FEBS Lett. 119: 97-100. https://doi.org/10.1016/0014-5793(80)81006-4
- Badino SF, Christensen SJ, Kari J, Windahl MS, Hvidt S, Borch K, et al. 2017. Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes. Biotechnol. Bioeng. 114: 1639-1647. https://doi.org/10.1002/bit.26276
- Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495. https://doi.org/10.1093/nar/gkt1178
- Billard H, Faraj A, Lopes Ferreira N, Menir S, Heiss-Blanquet S. 2012. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. Biotechnol. Biofuels 5: 9. https://doi.org/10.1186/1754-6834-5-9
- Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26: 553-560. https://doi.org/10.1038/nbt1403
- Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, et al. 2007. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 97: 1028-1038. https://doi.org/10.1002/bit.21329
- Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, et al. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 49: 3305-3316. https://doi.org/10.1021/bi100009p
- Ma L, Zhang J, Zou G, Wang C, Zhou Z. 2011. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a β-glucosidase gene from Penicillium decumbens. Enzyme Microb. Technol. 49: 366-371. https://doi.org/10.1016/j.enzmictec.2011.06.013
Cited by
- Contemporary proteomic research on lignocellulosic enzymes and enzymolysis: A review vol.344, pp.no.pb, 2021, https://doi.org/10.1016/j.biortech.2021.126263