DOI QR코드

DOI QR Code

Research on 5G Base Station Evaluation Method through Electromagnetic Wave Intensity Prediction Model

전자파 강도 예측 모델을 통한 5G 기지국 평가 기법 연구

  • Lee, Yang-Weon (Department of Information and Communication Engineering, Honam University)
  • Received : 2020.12.16
  • Accepted : 2021.02.28
  • Published : 2021.04.30

Abstract

With the recent introduction of 5G, electromagnetic radiation sources are spreading throughout life, so it is necessary to establish a citizen-centered electromagnetic safety management system. In particular, the beamforming method of the 5G antenna increases the power density measurement of electromagnetic waves by more than 10 times when the wireless base station is installed, so it is unreasonable to determine the safety by physical measurement. Therefore, it is necessary to determine the presence or absence of electromagnetic wave safety in daily life through a predictive method by calculation through systematic model analysis. In this paper, in order to check the possibility of a 5G wireless base station using an electromagnetic wave numerical analysis tool as a way to solve this problem, we compared the measured values of the actual base stations and the predicted values through the prediction model to compare the reliability. A method of constructing a real-time base station electromagnetic wave strength prediction evaluation system combined with software was also proposed.

최근 5G 도입에 따라 생활 전반으로 전자파 방사원이 확산됨에 따라 국민 중심 전자파 안전관리 체계 구축이 필요한 실정이다. 특히 5G 안테나의 빔포밍 방식은 무선기지국 설치시 전자파의 전력밀도 측정은 10배 이상으로 증가되어 물리적인 측정으로 안전성을 판단하는 것은 무리가 있다. 따라서 체계적인 모델 분석을 통하여 계산에 의한 예측기법으로 생활속에 전자파 안전 유무를 판별할 필요가 있다. 본 논문에서는 이같은 문제를 해결하기 위한 방법으로 전자파 수치해석툴을 사용한 5G 무선기지국의 가능성을 확인하기 위해서 실제 기지국 측정값과 예측 모델을 통한 예측값을 상호 비교하는 신뢰도 평가를 통하여 가능성을 확인하였다.

Keywords

References

  1. K. Stylianos, "Modelling and Coverage Improvement of DVB-T Networks," Journel of Brunel University, Dec. 2018.
  2. Guidance on complying with limits for human exposure to electromagnetic fields, ITU-T Recommendation K.52, Dec. 2004.
  3. Y. S. Won and S. C. Kim, "LTE-R LinkBudget Analysis for channels interference in the case of sharing the Integrated Public Network Frequency," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 10, pp. 1833-1839, Oct. 2017. https://doi.org/10.6109/jkiice.2017.21.10.1833
  4. M. S. Choi, S. C Oh, S. J. Lee, B. S. Yoon, D. J. Kim, and D. I. Sung, "A study on the reliability and availability improvement of wireless communication in the LTE-R," Journal of the Korea Institute of Information and Communication Engineering, vol. 24, no. 9, pp. 1172-1179, Sep. 2020. https://doi.org/10.6109/JKIICE.2020.24.9.1172
  5. W. Lee, T. W. Ban, S. H. Kim, and J. Ryu, "Neighbor discovery for mobile systems based on deep learning," Journal of the Korea Institute of Information and Communication Engineering, vol. 12, no. 3, pp. 527-533, Mar. 2018. https://doi.org/10.6109/JKIICE.2008.12.3.527
  6. M. Strappini, M. Angelucci, M. Vecchinocattivi, P. Gianola, R. Scotti, V. Villani, and D. Migahheli, "A Procedure for estimation on the electromagnetic field exposure levels," IEEE Transactions on Antennas and Propagation, vol. 13, no. 1, pp. 125-128, Aug. 2019.
  7. Difference Time Domain(FDTD) Modeling of Exposure from Vehicle Mounted Antennas, IEC TC 106 PT 62704-2, Dec. 2015.
  8. J. Deygout, "Correction Factor for Multiple Knife-Edge Diffraction," IEEE Transactions on Antennas and Propagation, vol. 39, no. 8, pp. 1256-1258, Aug. 2016. https://doi.org/10.1109/8.97368
  9. France ANFR [Internet]. Available: https://www.cartoradio.fr/index.html#/.
  10. ATDI analysis tool, [Internet]. Available: http://www.atdi.com/ics-telecom-ev/?lang=en.
  11. ICS Telecom EV, [Internet]. Available: https://slideplayer.com/slide/4649624/.