Acknowledgement
This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), Ministry of Education (2016R1A6A1A05011910), and the Research Institute for Dok-do and Ulleung-do Island of Kyungpook National University.
References
- Ahn JS, Lee KH. 1986. Studies on the volatile aroma components of edible mushroom (Tricholoma matsutake) of Korea. J. Kor. Soc. Food Nutr. 15: 253-257.
- Hoshi H, Yagi Y, Iijima H, Matsunaga K, Ishihara Y, Yasuhara T. 2005. Isolation and characterization of a novel immunomodulatory alpha-glucan-protein complex from the mycelium of Tricholoma matsutake in basidiomycetes. J. Agric. Food Chem. 53: 8948-8956. https://doi.org/10.1021/jf0510743
- Kim JY, Byeon SE, Lee YG, Lee JY, Park J, Hon, EK, et al. 2008. Immunostimulatory activities of polysaccharides from liquid culture of pine-mushroom Tricholoma matsutake. J. Microbiol. Biotechnol. 18: 95-103.
- Kim SY, Go KC, Song YS, Jeong YS, Kim EJ, Kim, BJ. 2014. Extract of the mycelium of T. matsutake inhibits elastase activity and TPA-induced MMP-1 expression in human fibroblasts. Int. J. Mol. Med. 34: 1613-1621. https://doi.org/10.3892/ijmm.2014.1969
- Hou Y, Ding X, Hou W, Zhong J, Zhu H, Ma B, et al. 2013. Anti-microorganism, anti-tumor, and immune activities of a novel polysaccharide isolated from Tricholoma matsutake. Pharmacogn Mag. 9: 244-249. https://doi.org/10.4103/0973-1296.113278
- Ohnuma N, Amemiya K, Kakuda R, Yaoita Y, Machida K, Kikuchi M. 2000. Sterol constituents from the edible mushrooms, Lentinula edodes and Tricholoma matsutake. Chem. Pharm. Bull. 48: 749-751. https://doi.org/10.1248/cpb.48.749
- Park C. 2020. 2019 Production of Forest Products. Korea Forest Service.
- Yamada A, Kanekawa S, Ohmasa M. 1999. Ectomycorrhiza formation of Tricholoma matsutake on Pinus densiflora. Mycoscience 40: 193-198. https://doi.org/10.1007/BF02464298
- Yamada A, Maeda K, Ohmasa M. 1999. Ectomycorrhiza formation of Tricholoma matsutake isolates on seedlings of Pinus densiflora in vitro. Mycoscience 40: 455-463. https://doi.org/10.1007/BF02461022
- Narimatsu M, Koiwa T, Masaki T, Sakamoto Y, Ohmori H. 2015. Relationship between climate, expansion rate, and fruiting in fairy rings ('shiro') of an ectomycorrhizal fungus Tricholoma matsutake in a Pinus densiflora forest. Fungal Ecol. 15: 18-28. https://doi.org/10.1016/j.funeco.2015.02.001
- Kataoka R, Siddiqui ZA, Kikuchi J, Ando M, Sriwati R, Nozaki A, et al. 2012. Detecting nonculturable bacteria in the active mycorrhizal zone of the pine mushroom Tricholoma matsutake. J. Microbiol. 50: 199-206. https://doi.org/10.1007/s12275-012-1371-7
- Kim M, Yoon H, You YH, Kim YE, Woo JR. 2013. Metagenomic analysis of fungal communities inhabiting the fairy ring zone of Tricholoma matsutake. J. Microbiol. Biotechnol. 23: 1347-1356. https://doi.org/10.4014/jmb1306.06068
- Lian C, Narimatsu M, Nara K, Hogetsu T. 2006. Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol. 171: 825-836. https://doi.org/10.1111/j.1469-8137.2006.01801.x
- Vaario LM, Fritze H, Spetz P, Heinonsalo J, Hanajik P, Pennanen T. 2011. Tricholoma matsutake dominates diverse microbial communities in different forest soils. Appl. Environ. Microbiol. 77: 8523-8531. https://doi.org/10.1128/AEM.05839-11
- Corrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW. 2016. Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. Mycorrhiza 26: 1-17. https://doi.org/10.1007/s00572-015-0641-8
- Kirk PM, Cannon PF, David JC, Stalpers JA. 2001. Ainsworth and Bisby's Dictionary of the Fungi, 9th Ed. CABI publishing, Wallingford. Uk.
- Peterson RL, Massicotte HB, Melville LH. 2004. Mycorrhizas: anatomy and cell biology, National Research Council Research Press, Ottawa. USA.
- Roy M, Schimann H, Braga-Neto R, Da Silva RAE, Duque J, Frame D, et al. 2016. Diversity and distribution of ectomycorrhizal fungi from Amazonian lowland white-sand forests in Brazil and French Guiana. Biotropica 48: 90-100. https://doi.org/10.1111/btp.12297
- Wang B, Qiu YL. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299-363. https://doi.org/10.1007/s00572-005-0033-6
- Agerer R. 2006. Fungal relationships and structural identity of their ectomycorrhizae. Mycol. Prog. 5: 67-107. https://doi.org/10.1007/s11557-006-0505-x
- Harley JL. 1989. The significance of mycorrhiza. Mycol. Res. 92: 129-139. https://doi.org/10.1016/S0953-7562(89)80001-2
- Lang C, Seven J, Polle A. 2011. Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed central European forest. Mycorrhiza 21: 297-308. https://doi.org/10.1007/s00572-010-0338-y
- Sabella E, Nutricati E, Aprile A, Miceli A, Sorce C, Lorenzi R, et al. 2015. Arthrinium phaeospermum isolated from Tuber borchii ascomata: the first evidence for a "Mycorrhization Helper Fungus"? Mycol. Progress 14: 59. https://doi.org/10.1007/s11557-015-1083-6
- Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA. 2011. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol. 77: 5934-5944. https://doi.org/10.1128/AEM.05255-11
- Oh SY, Fong JJ, Park MS, Lim YW. 2016. Distinctive feature of microbial communities and bacterial functional profiles in Tricholoma matsutake dominant soil. PLoS One 11: e0168573. https://doi.org/10.1371/journal.pone.0168573
- Zak DR, Holmes WE, White DC, Peacock AD, Tilman D. 2003. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84: 2042-2050. https://doi.org/10.1890/02-0433
- Hollister EB, Schadt CW, Palumbo AV, Ansley RJ, Boutton TW. 2010. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains. Soil Biol. Biochem. 42: 1816-1824. https://doi.org/10.1016/j.soilbio.2010.06.022
- Kernaghan G. 2005. Mycorrhizal diversity: Cause and effect? Pedobiologia 49: 511-520. https://doi.org/10.1016/j.pedobi.2005.05.007
- Peay KG, Baraloto C, Fine PV. 2013. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 7: 1852-1861. https://doi.org/10.1038/ismej.2013.66
- Wu YT, Wubet T, Trogisch S, Both S, Scholten T. 2013. Forest age and plant species composition determine the soil fungal community composition in a Chinese subtropical forest. PLoS One 8: e66829. https://doi.org/10.1371/journal.pone.0066829
- Baptista P, Reis F, Pereira E, Tavares RM, Santos PM, Richard F, et al. 2015. Soil DNA pyrosequencing and fruitbody surveys reveal contrasting diversity for various fungal ecological guilds in chestnut orchards. Environ. Microbiol. Rep. 7: 946-954. https://doi.org/10.1111/1758-2229.12336
- Handelsman J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
- Shokralla S, Spall JL, Gibson JF, Hajibabaei M. 2012. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21: 1794-1805. https://doi.org/10.1111/j.1365-294X.2012.05538.x
- Streit WR, Schmitz RA. 2004. Metagenomics--the key to the uncultured microbes. Curr. Opin. Microbiol. 7: 492-498. https://doi.org/10.1016/j.mib.2004.08.002
- Cannon PF, Kirk PM. 2007. Fungal Families of the World, Wallingford, UK: CABI.
- Panaro NJ, Yuen PK, Sakazume T, Fortina P, Kricka LJ. 2000. Evaluation of DNA fragment sizing and quantification by the agilent 2100 bioanalyzer. Clin. Chem. 46: 1851-1853. https://doi.org/10.1093/clinchem/46.11.1851
- Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6: 1621-1624. https://doi.org/10.1038/ismej.2012.8
- Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
- Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658-1659. https://doi.org/10.1093/bioinformatics/btl158
- Heck KL, Van Belle G, Simberloff D. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56: 1459-1461. https://doi.org/10.2307/1934716
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
- Prendergast-Miller MT, Baggs EM, Johnson D. 2011. Nitrous oxide production by the ectomycorrhizal fungi Paxillus involutus and Tylospora fibrillosa. FEMS Microbiol. Lett. 316: 31-35. https://doi.org/10.1111/j.1574-6968.2010.02187.x
- Niskanen T, Liimatainen K, Nuytinck J, Kirk P, Ibarguren IO, Garibay-Orijel R, et al. 2018. Identifying and naming the currently known diversity of the genus Hydnum, with an emphasis on European and North American taxa. Mycologia 110: 890-918. https://doi.org/10.1080/00275514.2018.1477004
- Ogawa M. 1976. Studies on the artificial reproduction of Tricholoma matsutake (S. Ito et Imai) Sing. III. Effects of growth promotion of natural products on the vegetative growth of T. matsutake. Trans Mycol. Soc. Jpn. 17: 492-498.
- You YH, Yoon HJ, Woo JR, Rim SO, Lee JH, Kong WS, et al. 2011. Diversity of endophytic fungi isolated from the rootlet of Pinus densiflora colonized by Tricholoma matsutake. Kor. J. Mycol. 39: 223-226. https://doi.org/10.4489/KJM.2010.39.3.223
- Oh SY, Kim M, Eimes JA, Lim YW. 2018. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds. PLoS One 13: e0190948. https://doi.org/10.1371/journal.pone.0190948
- Osono T. 2006. Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can. J. Microbiol. 52: 701-716. https://doi.org/10.1139/w06-023
- Summerbell RC. 2005. From Lamarckian fertilizers to fungal castles: recapturing the pre-1985 literature on endophytic and saprotrophic fungi associated with ectomycorrhizal root systems. Stud. Mycol. 53: 191-256. https://doi.org/10.3114/sim.53.1.191
- Tominaga Y. 1963. Studies on the life history of Japanese pine mushroom, Armillaria matsutake Ito et Imai. Bull. Hiroshima Agric. College 2: 105-145.
- Ogawa M. 1977. Microbial ecology of mycorrhizal fungus Tricholoma matsutake (S. Ito et Imai) Sing. in pine forest. III. Fungal florae in shiro soil and on the mycorrhiza. Bull. Government Forest Experimental Station 293: 105-170.
- Massee GE. 1914. Aspergillus cervinus Massee. Kew Misc. Bull. 4: 158.
- Elsohly HN, Slatkin DJ, Schiff Jr PL, Knapp JE. 1974. Metabolites of Aspergillus cervinus massee (Moniliaceae). J. Pharm. Sci. 63: 1632-1633. https://doi.org/10.1002/jps.2600631034
- Chen AJ, Varga J, Frisvad JC, Jiang XZ, Samson RA. 2016. Polyphasic taxonomy of Aspergillus section Cervini. Stud. Mycol. 85: 65-89. https://doi.org/10.1016/j.simyco.2016.11.001
- Park KH, Oh SY, Yoo S, Park MS, Fong JJ, Lim YW. 2020. Successional change of the fungal microbiome pine seedling roots inoculated with Tricholoma matsutake. Front. Microbial. 11: 2413.
- Cho DH, Lee KJ. 1995. A relationship between climatic factors and matsutake productions in 29 sites during a 10-year period in Korea. J. Korean Soc. For. Sci. 84: 277-285.
- Korea Meteorological Administration. 2015. Climate statistical analysis. Available from https://data.kma.go.kr/cmmn/main.do. Accessed Mar. 22, 2021.
- Chung DY, Lee KS, Lee JS, Youn YN. 2008. Characteristics of a forest soil on pine mushroom habitat located in Ponghwa, Kyungbuk and Gansung, Kangwon. 1. Physical and chemical properties of O horizon and surface soil. Kor. J. Soil Sci. Fert. 41: 206-213.
- Kim M, Yoon H, Kim YE, Kim YJ, Kong WS, Kim JG. 2014. Comparative analysis of bacterial diversity and communities inhabiting the fairy ring of Tricholoma matsutake by barcoded pyrosequencing. J. Appl. Microbiol. 117: 699-710. https://doi.org/10.1111/jam.12572
- Li Q, Li X, Chen C, Li S, Huang W, Xiong C, et al. 2016. Analysis of bacterial diversity and communities associated with Tricholoma matsutake fruiting bodies by barcoded pyrosequencing in Sichuan province, southwest China. J. Microbiol. Biotechnol. 26: 89-98. https://doi.org/10.4014/jmb.1505.05008