DOI QR코드

DOI QR Code

Bioactive Levan-Type Exopolysaccharide Produced by Pantoea agglomerans ZMR7: Characterization and Optimization for Enhanced Production

  • Al-Qaysi, Safaa A.S. (Department of Biology, College of Science (for Women), University of Baghdad) ;
  • Al-Haideri, Halah (Department of Biology, College of Science (for Women), University of Baghdad) ;
  • Al-Shimmary, Sana M. (Department of Biology, College of Science (for Women), University of Baghdad) ;
  • Abdulhameed, Jasim M. (Anbar Education Directors) ;
  • Alajrawy, Othman I. (Department of Applied Chemistry, College of Applied Science, University of Fallujah) ;
  • Al-Halbosiy, Mohammad M. (Biotechnology Research Center, University of Al- Nahrain) ;
  • Moussa, Tarek A.A. (Department of Botany and Microbiology, Faculty of Science, Cairo University) ;
  • Farahat, Mohamed G. (Department of Botany and Microbiology, Faculty of Science, Cairo University)
  • Received : 2021.01.20
  • Accepted : 2021.03.30
  • Published : 2021.05.28

Abstract

Levan is an industrially important, functional biopolymer with considerable applications in the food and pharmaceutical fields owing to its safety and biocompatibility. Here, levan-type exopolysaccharide produced by Pantoea agglomerans ZMR7 was purified by cold ethanol precipitation and characterized using TLC, FTIR, 1H, and 13C NMR spectroscopy. The maximum production of levan (28.4 g/l) was achieved when sucrose and ammonium chloride were used as carbon and nitrogen sources, respectively, at 35℃ and an initial pH of 8.0. Some biomedical applications of levan like antitumor, antiparasitic, and antioxidant activities were investigated in vitro. The results revealed the ability of levan at different concentrations to decrease the viability of rhabdomyosarcoma and breast cancer cells compared with untreated cancer cells. Levan appeared also to have high antiparasitic activity against the promastigote of Leishmania tropica. Furthermore, levan had strong DPPH radical scavenging (antioxidant) activity. These findings suggest that levan produced by P. agglomerans ZMR7 can serve as a natural biopolymer candidate for the pharmaceutical and medical fields.

Keywords

References

  1. Oner ET, Hernandez L, Combie J. 2016. Review of Levan polysaccharide: from a century of past experiences to future prospects. Biotechnol. Adv. 34: 827-844. https://doi.org/10.1016/j.biotechadv.2016.05.002
  2. Gonzalez-Garcinuno A, Tabernero A, Sanchez-Alvarez JM, Galan MA, Martin del Valle EM. 2017. Effect of bacteria type and sucrose concentration on levan yield and its molecular weight. Microb. Cell Fact. 16: 91. https://doi.org/10.1186/s12934-017-0703-z
  3. Gamal AA, Hashem AM, El-Safty MM, Soliman RA, Esawy MA. 2020. Evaluation of the antivirus activity of Enterococcus faecalis Esawy levan and its sulfated form. Biocatal Agric. Biotechnol. 28: 101735. https://doi.org/10.1016/j.bcab.2020.101735
  4. Moussa TAA, Al-Qaysi SAS, Thabit ZA, Kadhem SB. 2017. Microbial levan from Brachybacterium phenoliresistens: characterization and enhancement of production. Process Biochem. 57: 9-15. https://doi.org/10.1016/j.procbio.2017.03.008
  5. Zhang J, Yue X, Zeng Y, Hua E, Wang M, Sun Y. 2018. Bacillus amyloliquefaciens levan and its silver nanoparticles with antimicrobial properties. Biotechnol. Biotechnol. Equip. 32: 1583-1589. https://doi.org/10.1080/13102818.2018.1523690
  6. van den Ende W, Coopman M, Clerens S, Vergauwen R, le Roy K, Lammens W, et al. 2011. Unexpected presence of graminan- and levan-type fructans in the evergreen frost-hardy eudicot pachysandra terminalis (buxaceae): purification, cloning, and functional analysis of a 6-SST/6-SFT enzyme. Plant Physiol. 155: 603-614. https://doi.org/10.1104/pp.110.162222
  7. Liu Q, Yu S, Zhang T, Jiang B, Mu W. 2017. Efficient biosynthesis of levan from sucrose by a novel levansucrase from Brenneria goodwinii. Carbohydr. Polym. 157: 1732-1740. https://doi.org/10.1016/j.carbpol.2016.11.057
  8. Srikanth R, Reddy CHSSS, Siddartha G, Ramaiah MJ, Uppuluri KB. 2015. Review on production, characterization and applications of microbial levan. Carbohydr. Polym. 120: 102-114. https://doi.org/10.1016/j.carbpol.2014.12.003
  9. Desai M, Patel K. 2019. Isolation, optimization, and purification of extracellular levansucrase from nonpathogenic Klebsiella strain L1 isolated from waste sugarcane bagasse. Biocatal. Agric. Biotechnol. 19: 101107. https://doi.org/10.1016/j.bcab.2019.101107
  10. Balkrishna A, Agarwal V, Kumar G, Gupta AK. 2018 Applications of Bacterial Polysaccharides with Special Reference to the Cosmetic Industry. pp. 189-2002. In Singh J, Sharma D, Kumar G, Sharma N (eds.), Microbial Bioprospecting for Sustainable Development. Springer, Singapore.
  11. Belghith KS, Dahech I, Belghith H, Mejdoub H. 2012. Microbial production of levansucrase for synthesis of fructooligosaccharides and levan. Int. J. Biol. Macromol. 50: 451-458. https://doi.org/10.1016/j.ijbiomac.2011.12.033
  12. Al-Halbosiy MMF, Thabit ZA, Al-Qaysi SA-DAS, Moussa TAA. 2018. Biological activity of levan produced from rhizospheric soil bacterium Brachybacterium phenoliresistens KX139300. Baghdad. Sci. J. 15.
  13. Kojic JRS, Vrvic MM, Gojgic-Cvijovic G, Beskoski VP, Jakovljevic DM. 2016. Microbial polysaccharides: between oil wells, food and drugs. Food Eng. Ser. 313-327.
  14. Ragab TIM, Shalaby ASG, Awdan SAE, El-Bassyouni GT, Salama BM, Helmy WA, Esawy MA. 2020. Role of levan extracted from bacterial honey isolates in curing peptic ulcer: in vivo. Int. J. Biol. Macromol. 142: 564-573. https://doi.org/10.1016/j.ijbiomac.2019.09.131
  15. Shih IL, Yu YT, Shieh CJ, Hsieh CY. 2005. Selective production and characterization of levan by Bacillus subtilis (Natto) Takahashi. J. Agric. Food Chem. 53: 8211-8215. https://doi.org/10.1021/jf058084o
  16. Jakob F, Pfaff A, Novoa-Carballal R, Rubsam H, Becker T, Vogel RF. 2013. Structural analysis of fructans produced by acetic acid bacteria reveals a relation to hydrocolloid function. Carbohydr. Polym. 92: 1234-1242. https://doi.org/10.1016/j.carbpol.2012.10.054
  17. Singh RS, Kaur N. 2010. Microbial biopolymers for edible film and coating applications. Adv. Ind. Biotechnol. 187-216.
  18. Gomes TD, Caridade SG, Sousa MP, Azevedo S, Kandur MY, Oner ET, et al. 2018. Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta Biomater. 69: 183-195. https://doi.org/10.1016/j.actbio.2018.01.027
  19. Ates O. 2015. Systems Biology of Microbial exopolysaccharides production. Front. Bioeng. Biotechnol. 3: 200. https://doi.org/10.3389/fbioe.2015.00200
  20. Nasir A, Sattar F, Ashfaq I, Lindemann SR, Chen MH, Van den Ende W, et al. 2020. Production and characterization of a high molecular weight levan and fructooligosaccharides from a rhizospheric isolate of Bacillus aryabhattai. LWT 123: 109093. https://doi.org/10.1016/j.lwt.2020.109093
  21. Chhipa H, Kaushik N. 2017. Fungal and bacterial diversity isolated from Aquilaria malaccensis tree and soil, induces agarospirol formation within 3 months after artificial infection. Front. Microbiol. 8: 1286. https://doi.org/10.3389/fmicb.2017.01286
  22. Poli A, Kazak H, Gurleyendag B, Tommonaro G, Pieretti G, Oner ET, et al. 2009. High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydr. Polym. 78: 651-657. https://doi.org/10.1016/j.carbpol.2009.05.031
  23. Zhang T, Li R, Qian H, Mu W, Miao M, Jiang B. 2014. Biosynthesis of levan by levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydr. Polym. 101: 975-981. https://doi.org/10.1016/j.carbpol.2013.10.045
  24. Miller GL. 1959. Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  25. Jathore NR, Bule MV, Tilay AV, Annapure US. 2012. Microbial levan from Pseudomonas fluorescens: characterization and medium optimization for enhanced production. Food Sci. Biotechnol. 21: 1045-1053. https://doi.org/10.1007/s10068-012-0136-8
  26. Semjonovs P, Shakirova L, Treimane R, Shvirksts K, Auzina L, Cleenwerck I, et al. 2016. Production of extracellular fructans by Gluconobacter nephelii P1464. Lett. Appl. Microbiol. 62: 145-152. https://doi.org/10.1111/lam.12521
  27. Dahech I, Belghith KS, Belghith H, Mejdoub H. 2012. Partial purification of a Bacillus licheniformis levansucrase producing levan with antitumor activity. Int. J. Biol. Macromol. 51: 329-335. https://doi.org/10.1016/j.ijbiomac.2012.04.030
  28. Xavier JR, Ramana KV. 2017. Optimization of levan production by cold-active Bacillus licheniformis ANT 179 and fructooligosaccharide synthesis by its levansucrase. Appl. Biochem. Biotechnol. 181: 986-1006. https://doi.org/10.1007/s12010-016-2264-8
  29. Srikanth R, Siddartha G, Sundhar Reddy CHSS, Harish BS, Janaki Ramaiah M, Uppuluri KB. 2015. Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohydr. Polym. 123: 8-16. https://doi.org/10.1016/j.carbpol.2014.12.079
  30. Inglese J. 2010. A practical guide to assay development and high-throughput screening in drug discovery. edited by Taosheng Chen. ChemMedChem. 5: 1398-1399. https://doi.org/10.1002/cmdc.201000229
  31. Mahmoudvand H, Tavakoli R, Sharififar F, Minaie K, Ezatpour B, Jahanbakhsh S, et al. 2015. Leishmanicidal and cytotoxic activities of Nigella sativa and its active principle, thymoquinone. Pharm. Biol. 53: 1052-1057. https://doi.org/10.3109/13880209.2014.957784
  32. Xu X, Gao C, Liu Z, Wu J, Han J, Yan M, Wu Z. 2016. Characterization of the levan produced by Paenibacillus bovis sp. nov BD3526 and its immunological activity. Carbohydr. Polym. 144: 178-186. https://doi.org/10.1016/j.carbpol.2016.02.049
  33. Yu X, Li L, Zhang J, Shen Z, Zhu C, Wang P, et al. 2016. Structural analysis of macromolecular levan produced by Bacillus megaterium GJT321 based on enzymatic method. Int. J. Biol. Macromol. 93: 1080-1089. https://doi.org/10.1016/j.ijbiomac.2016.09.086
  34. Ahuja M, Singh S, Kumar A. 2013. International journal of biological macromolecules evaluation of carboxymethyl gellan gum as a mucoadhesive polymer. Int. J. Biol. Macromol. 53: 114-121. https://doi.org/10.1016/j.ijbiomac.2012.10.033
  35. Han YW, Clarke MA. 1990. Production and characterization of microbial levan. J. Agric. Food Chem. 38: 393-396. https://doi.org/10.1021/jf00092a011
  36. Feng J, Gu Y, Han L, Bi K, Quan Y, Yang C, et al. 2015. Construction of a Bacillus amyloliquefaciens strain for high purity levan production. FEMS Microbiol. Lett. 362: fnv079.
  37. Aramsangtienchai P, Kongmon T, Pechroj S, Srisook K. 2020. Enhanced production and immunomodulatory activity of levan from the acetic acid bacterium, Tanticharoenia sakaeratensis. Int. J. Biol. Macromol. 163: 574-581. https://doi.org/10.1016/j.ijbiomac.2020.07.001
  38. Bouallegue A, Casillo A, Chaari F, La Gatta A, Lanzetta R, Corsaro MM, et al. 2020. Levan from a new isolated Bacillus subtilis AF17: purification, structural analysis and antioxidant activities. Int. J. Biol. Macromol. 144: 316-324. https://doi.org/10.1016/j.ijbiomac.2019.12.108
  39. Taylan O, Yilmaz MT, Dertli E. 2019. Partial characterization of a levan type exopolysaccharide (EPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. Int. J. Biol. Macromol. 136: 436-444. https://doi.org/10.1016/j.ijbiomac.2019.06.078
  40. Farahat MG. 2020. Enhancement of β-cyclodextrin production and fabrication of edible antimicrobial films incorporated with clove essential Oil/β-cyclodextrin inclusion complex. Microbiol. Biotechnol. Lett. 48: 12-23. https://doi.org/10.4014/mbl.1909.09016
  41. Dos Santos LF, Bazani Cabral De Melo FC, Martins Paiva WJ, Borsato D, Corradi Custodio Da Silva MDL, Colabone Celligoi MAP. 2013. Characterization and optimization of levan production by Bacillus subtilis NATTO. Rom. Biotechnol. Lett. 18: 8413-8422.
  42. Silbir S, Dagbagli S, Yegin S, Baysal T, Goksungur Y. 2014. Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Carbohydr. Polym. 99: 454-461. https://doi.org/10.1016/j.carbpol.2013.08.031
  43. Senthilkumar V, Gunasekaran P. 2005. Influence of fermentation conditions on levan production by Zymomonas mobilis CT2. Indian J. Biotechnol. 4: 491-496.
  44. Kucukasik F, Kazak H, Guney D, Finore I, Poli A, Yenigun O, et al. 2011. Molasses as fermentation substrate for levan production by Halomonas sp. Appl. Microbiol. Biotechnol. 89: 1729-1740. https://doi.org/10.1007/s00253-010-3055-8
  45. Kekez BD, Gojgic-Cvijovic GD, Jakovljevic DM, Stefanovic Kojic JR, Markovic MD, Beskoski VP, et al. 2015. High levan production by Bacillus licheniformis NS032 using ammonium chloride as the sole nitrogen source. Appl Biochem Biotechnol. 175: 3068-3083. https://doi.org/10.1007/s12010-015-1475-8
  46. Goncalves BCM, Mantovan J, Ribeiro MLL, Borsato D, Celligoi MAPC. 2013. Optimization production of thermo active levansucrase from Bacillus subtilis Natto CCT 7712 J. Appl. Biol. Biotechnol. 1: 1-8.
  47. Kazak Sarilmiser H, Ates O, Ozdemir G, Arga KY, Toksoy Oner E. 2015. Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T. J. Biosci. Bioeng. 119: 455-463. https://doi.org/10.1016/j.jbiosc.2014.09.019
  48. Abid Y, Azabou S, Casillo A, Gharsallah H, Jemil N, Lanzetta R, et al. 2019. Isolation and structural characterization of levan produced by probiotic Bacillus tequilensis-GM from Tunisian fermented goat milk. Int. J. Biol. Macromol. 133: 786-794. https://doi.org/10.1016/j.ijbiomac.2019.04.130
  49. Kosarsoy Agceli G, Cihangir N. 2020. Nano-sized biopolymer levan: its antimicrobial, anti-biofilm and anti-cancer effects. Carbohydr. Res. 494: 108068. https://doi.org/10.1016/j.carres.2020.108068
  50. Cheng R, Cheng L, Zhao Y, Wang L, Wang S, Zhang J. 2021. Biosynthesis and prebiotic activity of a linear levan from a new Paenibacillus isolate. Appl. Microbiol. Biotechnol. 105: 769-787. https://doi.org/10.1007/s00253-020-11088-8
  51. Liu J, Luo J, Ye H, Zeng X. 2012. Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food Chem. Toxicol. 50: 767-772. https://doi.org/10.1016/j.fct.2011.11.016
  52. Queiroz EAIF, Fortes ZB, da Cunha MAA, Sarilmiser HK, Barbosa Dekker AM, Oner ET, et al. 2017. Levan promotes antiproliferative and pro-apoptotic effects in MCF-7 breast cancer cells mediated by oxidative stress. Int. J. Biol. Macromol. 102: 565-570. https://doi.org/10.1016/j.ijbiomac.2017.04.035
  53. Dahech I, Harrabi B, Hamden K, Feki A, Mejdoub H, Belghith H, et al. 2013. Antioxidant effect of nondigestible levan and its impact on cardiovascular disease and atherosclerosis. Int. J. Biol. Macromol. 58: 281-286. https://doi.org/10.1016/j.ijbiomac.2013.04.058