Acknowledgement
This study was supported by the Saudi Aramco-KAIST CO2 Management Center to whom the authors are grateful. The authors thank the Korean Basic Science Institute (Jeonju Center) for mercury intrusion porosimetry analysis.
References
- Al-Amoudi, O.S.B., Ahmad, S., Khan, S. and Maslehuddin, M. (2019), "Durability performance of concrete containing Saudi natural pozzolans as supplementary cementitious material", Adv. Concrete Constr., 8(2), 119-126. https://doi.org/10.12989/acc.2019.8.2.119.
- Amr, I.T., Fadhel, B., Al Hunaidy, A.S., Bamagain, R.A., Lee, H.K. and Park, S.M. (2019), "Method for enhancement of mechanical strength and CO2 storage in cementitious products", Google Patents.
- Annadurai, S., Rathinam, K. and Kanagarajan, V. (2020), "Development of eco-friendly concrete produced with Rice Husk Ash (RHA) based geopolymer", Adv. Concrete Constr, 9(2), 139-147. https://doi.org/10.12989/acc.2020.9.2.139.
- Bernardo, G., Telesca, A. and Valenti, G.L. (2006), "A porosimetric study of calcium sulfoaluminate cement pastes cured at early ages", Cement Concrete Res., 36(6), 1042-1047. https://doi.org/10.1016/j.cemconres.2006.02.014.
- Borges, P.H., Costa, J.O., Milestone, N.B., Lynsdale, C.J. and Streatfield, R.E. (2010), "Carbonation of CH and C-S-H in composite cement pastes containing high amounts of BFS", Cement Concrete Res., 40(2), 284-292. https://doi.org/10.1016/j.cemconres.2009.10.020.
- Chen, X., Wu, S. and Zhou, J. (2013), "Influence of porosity on compressive and tensile strength of cement mortar", Constr. Build. Mater., 40, 869-874. https://doi.org/10.1016/j.conbuildmat.2012.11.072.
- Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S. (2007), "Geopolymer technology: the current state of the art", J. Mater. Sci., 42(9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z.
- El-Hassan, H., Shao, Y. and Ghouleh, Z. (2013), "Reaction products in carbonation-cured lightweight concrete", J. Mater. Civil Eng., 25(6), 799-809. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000638.
- Galle, C. (2001). "Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: A comparative study between oven-, vacuum-, and freeze-drying", Cement Concrete Res., 31(10), 1467-1477. https://doi.org/10.1016/S0008-8846(01)00594-4.
- Gartner, E. and Hirao, H. (2015), "A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete", Cement Concrete Res., 78, 126-142. https://doi.org/10.1016/j.cemconres.2015.04.012.
- Gibbins, J. and Chalmers, H. (2008), "Carbon capture and storage", Energ. Policy, 36(12), 4317-4322. https://doi.org/10.1016/j.enpol.2008.09.058.
- Goto, K., Yogo, K. and Higashii, T. (2013), "A review of efficiency penalty in a coal-fired power plant with postcombustion CO2 capture", Appl. Energy, 111, 710-720. https://doi.org/10.1016/j.apenergy.2013.05.020.
- Hu, Y., Hu, S., Yang, B. and Wang, S. (2020), "Effects of subsequent curing on chloride resistance and microstructure of steam-cured mortar", Adv. Concrete Constr., 9(5), 449-457. https://doi.org/10.12989/acc.2020.9.5.449.
- Jang, J.G. and Lee, H.K. (2016), "Microstructural densification and CO2 uptake promoted by the carbonation curing of beliterich Portland cement", Cement Concrete Res., 82, 50-57. https://doi.org/10.1016/j.cemconres.2016.01.001.
- Jang, J.G., Kim, G.M., Kim, H.J. and Lee, H.K. (2016), "Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials", Constr. Build. Mater., 127, 762-773. https://doi.org/10.1016/j.conbuildmat.2016.10.017.
- Jenkinson, D.S., Adams, D. and Wild, A. (1991), "Model estimates of CO2 emissions from soil in response to global warming", Nature, 351(6324), 304-306. https://doi.org/10.1038/351304a0.
- Kashef-Haghighi, S., Shao, Y. and Ghoshal, S. (2015), "Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing", Cement Concrete Res., 67, 1-10. https://doi.org/10.1016/j.cemconres.2014.07.020.
- Kim, G.M., Jang, J.G., Naeem, F. and Lee, H.K. (2015), "Heavy metal leaching, CO2 uptake and mechanical characteristics of carbonated porous concrete with alkali-activated slag and bottom ash", Int. J. Concrete Struct. M., 9(3), 283-294. https://doi.org/10.1007/s40069-015-0111-x.
- Kim, S.H., Lee, N.K., Lee, H.K. and Park, S.M. (2021), "Experimental and theoretical studies of hydration of ultra-high performance concrete cured under various curing conditions", Constr. Build. Mater., 278, 122352. https://doi.org/10.1016/j.conbuildmat.2021.122352.
- Kumar, V.P. and Prasad, D.R. (2019), "Influence of supplementary cementitious materials on strength and durability characteristics of concrete", Adv. Concrete Constr., 7(2), 75-85. http://dx.doi.org/10.12989/acc.2019.7.2.075.
- Lee, R.P., Keller, F. and Meyer, B. (2017), "A concept to support the transformation from a linear to circular carbon economy: net zero emissions, resource efficiency and conservation through a coupling of the energy, chemical and waste management sectors", Clean Energy, 1(1), 102-113. https://doi.org/10.1093/ce/zkx004.
- Loo, Y., Chin, M., Tam, C. and Ong, K. (1994), "A carbonation prediction model for accelerated carbonation testing concrete", Mag. Concrete Res., 46(168), 191-200. https://doi.org/10.1680/macr.1994.46.168.191.
- Lothenbach, B., Scrivener, K. and Hooton, R. (2011), "Supplementary cementitious materials", Cement Concrete Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
- Mehta, P.K. and Monteiro, P.J. (2017), Concrete Microstructure, Properties and Materials, McGraw-Hill Education, New York, USA.
- Park, S., Jang, J., Son, H. and Lee, H.K. (2017), "Stable conversion of metastable hydrates in calcium aluminate cement by early carbonation curing", J. CO2 Util., 21, 224-226. https://doi.org/10.1016/j.jcou.2017.07.002.
- Park, S.M., Jang, J.G., Lee, N.K. and Lee, H.K. (2016), "Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures", Cement Concrete Res., 89, 72-79. https://doi.org/10.1016/j.cemconres.2016.08.004.
- Park, S.M., Seo, J.H. and Lee, H.K. (2018), "Thermal evolution of hydrates in carbonation-cured Portland cement", Mater. Struct., 51(1), 7. https://doi.org/10.1617/s11527-017-1114-7.
- Pera, J. and Ambroise, J. (2004), "New applications of calcium sulfoaluminate cement", Cement Concrete Res., 34(4), 671-676. https://doi.org/10.1016/j.cemconres.2003.10.019.
- Poon, C., Kou, S., Lam, L. and Lin, Z. (2001), "Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4)", Cement Concrete Res., 31(6), 873-881. https://doi.org/10.1016/S0008-8846(01)00478-1.
- Rostami, V., Shao, Y. and Boyd, A.J. (2011), "Durability of concrete pipes subjected to combined steam and carbonation curing", Constr. Build. Mater., 25(8), 3345-3355. https://doi.org/10.1016/j.conbuildmat.2011.03.025.
- Rostami, V., Shao, Y. and Boyd, A.J. (2012), "Carbonation curing versus steam curing for precast concrete production", J. Mater. Civil Eng., 24(9), 1221-1229. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000462.
- Rostami, V., Shao, Y., Boyd, A.J. and He, Z. (2012), "Microstructure of cement paste subject to early carbonation curing", Cement Concrete Res., 42(1), 186-193. https://doi.org/10.1016/j.cemconres.2011.09.010.
- Rossler, M. and Odler, I. (1985), "Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes I. Effect of porosity", Cement Concrete Res., 15(2), 320-330. https://doi.org/10.1016/0008-8846(85)90044-4.
- Sahani, A.K., Samanta, A.K. and Roy, D.K.S. (2019), "Influence of mineral by-products on compressive strength and microstructure of concrete at high temperature", Adv. Concrete Constr., 7(4), 263-275. https://doi.org/10.12989/acc.2019.7.4.263.
- Scrivener, K., Snellings, R. and Lothenbach, B. (2018), A Practical Guide to Microstructural Analysis of Cementitious Materials, Crc Press, Boca Raton, USA.
- Seo, J.H., Kim, S.H., Park, S.M., Bae, S.J. and Lee, H.K. (2021), "Microstructural evolution and carbonation behavior of limeslag binary binders", Cement Concrete Compos., 119, 104000. https://doi.org/10.1016/j.cemconcomp.2021.104000.
- Seo, J.H., Park, S.M. and Lee, H.K. (2018), "Evolution of the binder gel in carbonation-cured Portland cement in an acidic medium", Cement Concrete Res., 109, 81-89. https://doi.org/10.1016/j.cemconres.2018.03.014.
- Seo, J.H., Park, S.M., Yoon, H.N., Jang, J.G., Kim, S.H. and Lee, H.K. (2019), "Utilization of calcium carbide residue using granulated blast furnace slag", Mater., 12(21), 3511. https://doi.org/10.3390/ma12213511.
- Silva, D.A., Roman, H.R. and Gleize, P. (2002), "Evidences of chemical interaction between EVA and hydrating Portland cement", Cement Concrete Res., 32(9), 1383-1390. https://doi.org/10.1016/S0008-8846(02)00805-0.
- Taylor, H.F. (1997), Cement Chemistry, Thomas Telford, London, United Kingdom.
- Vollpracht, A., Lothenbach, B., Snellings, R. and Haufe, J. (2016), "The pore solution of blended cements: A review", Mater. Struct., 49(8), 3341-3367. https://doi.org/10.1617/s11527-015-0724-1.
- Xi, F., Davis, S.J., Ciais, P., Crawford-Brown, D., Guan, D., Pade, C., Shi, T., Syddall, M., Lv, J., Ji, L., Bing, L., Wang, J., Wei, W., Yang, K.H., Lagerblad, B., Galan, I. andrade, C., Zhang, Y. and Liu, Z. (2016), "Substantial global carbon uptake by cement carbonation", Nat. Geosci., 9(12), 880-883. https://doi.org/10.1038/ngeo2840.
- Yoon, H.N., Seo, J.H., Kim, S.H., Lee, H.K. and Park, S.M. (2021), "Hydration of calcium sulfoaluminate cement blended with blast-furnace slag", Constr. Build. Mater., 268, 121214. https://doi.org/10.1016/j.conbuildmat.2020.121214.
- Zhang, D. and Shao, Y. (2016), "Early age carbonation curing for precast reinforced concretes", Constr. Build. Mater., 113, 134-143. https://doi.org/10.1016/j.conbuildmat.2016.03.048.