DOI QR코드

DOI QR Code

Ginseng polysaccharides: A potential neuroprotective agent

  • Wang, Na (School of Pharmacy, Shandong University of Traditional Chinese Medicine) ;
  • Wang, Xianlei (National Oceanographic Center) ;
  • He, Mengjiao (School of Pharmacy, Shandong University of Traditional Chinese Medicine) ;
  • Zheng, Wenxiu (School of Pharmacy, Shandong University of Traditional Chinese Medicine) ;
  • Qi, Dongmei (Experimental center, Shandong University of Traditional Chinese Medicine) ;
  • Zhang, Yongqing (School of Pharmacy, Shandong University of Traditional Chinese Medicine) ;
  • Han, Chun-chao (School of Pharmacy, Shandong University of Traditional Chinese Medicine)
  • Received : 2020.03.05
  • Accepted : 2020.09.05
  • Published : 2021.03.01

Abstract

The treatments of nervous system diseases (NSDs) have long been difficult issues for researchers because of their complexity of pathogenesis. With the advent of aging society, searching for effective treatments of NSDs has become a hot topic. Ginseng polysaccharides (GP), as the main biologically active substance in ginseng, has various biological properties in immune-regulation, anti-oxidant, anti-inflammation and etc. Considering the association between the effects of GP and the pathogenesis of neurological disorders, many related experiments have been conducted in recent years. In this paper, we reviewed previous studies about the effects and mechanisms of GP on diseases related to nervous system. We found GP play an ameliorative role on NSDs through the regulation of immune system, inflammatory response, oxidative damage and signaling pathway. Structure-activity relationship was also discussed and summarized. In addition, we provided new insights into GP as promising neuroprotective agent for its further development and utilization.

Keywords

Acknowledgement

This work was supported by the Project of Shandong Province Key Research and Development Program [Grant No. 2017YYSP030]. Ji'nan Science and Technology Project [Grant No. 201303055]. Major Science and Technology Innovation in Shandong Province [Grant No. 2017CXGC1307]. Key Laboratory of Classical Theory of Traditional Chinese Medicine, Ministry of Education. Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research and Traditional Chinese Medicine Resources and Utilization Innovation Team.

References

  1. Nery TGM, Silva EM, Tavares R, Passetti F. The challenge to search for new nervous system disease biomarker candidates: the opportunity to use the proteogenomics approach. J Mol Neurosci 2019;67(1):150-64. https://doi.org/10.1007/s12031-018-1220-1
  2. Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 2015;86(4):883-901. https://doi.org/10.1016/j.neuron.2015.03.035
  3. Cragnolini AB, Lampitella G, Virtuoso A, Viscovo I, Panetsos F, Papa M, Cirillo G. Regional brain susceptibility to neurodegeneration: what is the role of glial cells? Neural Regen Res 2020;15(5):838-42. https://doi.org/10.4103/1673-5374.268897
  4. Franco R, Fernandez-Suarez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 2015;131:65-86. https://doi.org/10.1016/j.pneurobio.2015.05.003
  5. Rokot NT, Kairupan TS, Cheng KC, Runtuwene J, Kapantow NH, Amitani M, Morinaga A, Amitani H, Asakawa A, Inui A. A role of ginseng and its constituents in the treatment of central nervous system disorders. Evid Based Complement Alternat Med 2016;2016:2614742.
  6. Jia D, Deng Y, Gao J, Liu X, Chu J, Shu Y. Neuroprotective effect of Panax notoginseng plysaccharides against focal cerebral ischemia reperfusion injury in rats. Int J Biol Macromol 2014;63:177-80. https://doi.org/10.1016/j.ijbiomac.2013.10.034
  7. Hwang SH, Shin TJ, Choi SH, Cho HJ, Lee BH, Pyo MK. Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates g protein-coupled lysophosphatidic acid receptors with high affinity. Molecules & Cells 2012;33(2):151-62. https://doi.org/10.1007/s10059-012-2216-z
  8. Ferreira SS, Passos CP, Madureira P, Vilanova M, Coimbra MA. Structure-function relationships of immunostimulatory polysaccharides: a review [published correction appears in Carbohydr Polym. 2016 Aug 20;147:557-558]. Carbohydr Polym 2015;132:378-96. https://doi.org/10.1016/j.carbpol.2015.05.079
  9. Sun L, Wu D, Ning X, Yang G, Lin ZH, Tian MH, Zhou YF. a-Amylase-assisted extraction of polysaccharides from Panax ginseng. Int J Biol Macromol 2015;75:152-7. https://doi.org/10.1016/j.ijbiomac.2015.01.025
  10. Song YR, Sung SK, Jang M, Lim TG, Cho CW, Han CJ, Hong HD. Enzyme-assisted extraction, chemical characteristics, and immunostimulatory activity of polysaccharides from Korean ginseng (Panax ginseng Meyer). Int J Biol Macromol 2018;116:1089-97. https://doi.org/10.1016/j.ijbiomac.2018.05.132
  11. Shen H, Gao XJ, Li T, Jing WH, Han BL, Jia YM, Hu N, Yan ZX, Li SL, Yan R. Ginseng polysaccharides enhanced ginsenoside Rb1 and microbial metabolites exposure through enhancing intestinal absorption and affecting gut microbial metabolism. J Ethnopharmacol 2018;216:47-56. https://doi.org/10.1016/j.jep.2018.01.021
  12. Zhou SS, Xu J, Zhu H, Wu J, Xu JD, Yan R, Li XY, Liu HH, Duan SM, Wang Z, et al. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction. Sci Rep 2016;6:22474. https://doi.org/10.1038/srep22474
  13. Arzani M, Jahromi SR, Ghorbani Z, Vahabizad F, Martelletti P, Ghaemi A, Sacco S, Togha M. Gut-brain Axis and migraine headache: a comprehensive review. J Headache Pain 2020;21(1):15. https://doi.org/10.1186/s10194-020-1078-9
  14. Sun Y. Structure and biological activities of the polysaccharides from the leaves, roots and fruits of Panax ginseng C.A. Meyer: an overview. Carbohydr Polym 2011;85(3):490-9. https://doi.org/10.1016/j.carbpol.2011.03.033
  15. Qi YL, Li SS, Qu D, Chen LX, Gong RZ, Gao K, Sun YS. Effects of ginseng neutral polysaccharide on gut microbiota in antibiotic-associated diarrhea mice. Zhongguo Zhong Yao Za Zhi 2019;44(4):811-8.
  16. Li B, Zhang N, Feng Q, Li H, Wang D, Ma L, Liu S, Chen C, Wu W, Jiao L. The core structure characterization and of ginseng neutral polysaccharide with the immune-enhancing activity. Int J Biol Macromol 2019;123:713-22. https://doi.org/10.1016/j.ijbiomac.2018.11.140
  17. Wang L, Yu X, Yang X, Li Y, Yao Y, Lui EM, Ren G. Structural and anti-inflammatory characterization of a novel neutral polysaccharide from North American ginseng (Panax quinquefolius). Int J Biol Macromol 2015;74:12-7. https://doi.org/10.1016/j.ijbiomac.2014.10.062
  18. Zhang X, Yu L, Bi H, Li X, Ni W, Han H. Total fractionation and characterization of the water-soluble polysaccharides isolated from panax ginseng C. A. Meyer. Carbohydr Polym 2009;77(3):544-52. https://doi.org/10.1016/j.carbpol.2009.01.034
  19. Tomoda M, Takeda K, Shimizu N, Gonda R, Ohara N, Takada K, Hirabayashi K. Characterization of two acidic polysaccharides having immunological activities from the root of Panax ginseng. Biol Pharm Bull 1993;16(1):22-5. https://doi.org/10.1248/bpb.16.22
  20. Ji L, Jie Z, Ying X, Yue Q, Zhou Y, Sun L. Structural characterization of alkali-soluble polysaccharides from Panax ginseng C. A. Meyer. R Soc Open Sci 2018;5(3):171644. https://doi.org/10.1098/rsos.171644
  21. Zheng Y, Yang G, Zhao Z, Guo T, Shi H, Zhou Y. Structural analysis of ginseng polysaccharides extracted by edta solution. Rsc Advances 2015;6(4):2724-30.
  22. Zhang X, Li S, Sun L, Ji L, Zhu J, Fan Y, Tai G, Zhou Y. Further analysis of the structure and immunological activity of an RG-I type pectin from Panax ginseng. Carbohydr Polym 2012;89(2):519-25. https://doi.org/10.1016/j.carbpol.2012.03.039
  23. Byeon SE, Lee J, Kim JH, Yang WS, Kwak YS, Kim SY, Choung ES, Rhee MH, Cho JY. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng. Mediators Inflamm 2012;2012:732860.
  24. Agrawal A, Dillon S, Denning TL, Pulendran B. ERK1-/- mice exhibit Th1 cell polarization and increased susceptibility to experimental autoimmune encephalomyelitis. J Immunol 2006;176(10):5788-96. https://doi.org/10.4049/jimmunol.176.10.5788
  25. Rincon M, Flavell RA, Davis RA. The JNK and P38 MAP kinase signaling pathways in T cell-mediated immune responses. Free Radic Biol Med 2000;28(9):1328-37. https://doi.org/10.1016/S0891-5849(00)00219-7
  26. Ivanovska N, Saso L, Dimitrov P. Kinase inhibitors with redox and anti-inflammatory activities. Curr Top Med Chem 2015;15(9):872-85. https://doi.org/10.2174/1568026615666150220115838
  27. Wang J, Li Y, Luo P, Chen Y, Xi Q, Wu H, Zhao W, Shu G, Wang S, Gao P. Oral supplementation with ginseng polysaccharide promotes food intake in mice. Brain Behav 2019;9(9):e01340.
  28. Zhu W, Ma S, Qu R, Kang D. Antidepressant-like effect of saponins extracted from Chaihu-jia-longgu-muli-tang and its possible mechanism. Life Sci 2006;79(8):749-56. https://doi.org/10.1016/j.lfs.2006.02.015
  29. Penninx BW. Depression and cardiovascular disease: epidemiological evidence on their linking mechanisms. Neurosci Biobehav Rev 2017;74(Pt B):277-86. https://doi.org/10.1016/j.neubiorev.2016.07.003
  30. Buigues C, Padilla-Sanchez C, Garrido JF, Navarro-Martinez R, Ruiz-Ros V, Cauli O. The relationship between depression and frailty syndrome: a systematic review. Aging Ment Health 2015;19(9):762-72. https://doi.org/10.1080/13607863.2014.967174
  31. Zhang E, Liao P. Brain-derived neurotrophic factor and post-stroke depression. J Neurosci Res 2020;98(3):537-48. https://doi.org/10.1002/jnr.24510
  32. Patel A. Review: the role of inflammation in depression. Psychiatr Danub 2013;25(Suppl 2):S216-23.
  33. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health 2013;34:119-38. https://doi.org/10.1146/annurev-publhealth-031912-114409
  34. Lanfumey L, Hamon M. Approche neurobiologique de la depression: nouvelles donnees [Neurobiology of depression: new data]. Therapie 2005;60(5):431-40. https://doi.org/10.2515/therapie:2005064
  35. Coyle JT, Duman RS. Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 2003;38(2):157-60. https://doi.org/10.1016/S0896-6273(03)00195-8
  36. Wiklund IK, Mattsson LA, Lindgren R, Limoni C. Effects of a standardized ginseng extract on quality of life and physiological parameters in symptomatic postmenopausal women: a double-blind, placebo-controlled trial. Swedish Alternative Medicine Group. Int J Clin Pharmacol Res 1999;19(3):89-99.
  37. Wang J, Flaisher-Grinberg S, Li S, Liu H, Sun L, Zhou Y, Einat H. Antidepressant-like effects of the active acidic polysaccharide portion of ginseng in mice. J Ethnopharmacol 2010;132(1):65-9. https://doi.org/10.1016/j.jep.2010.07.042
  38. McEwen BS, Nasca C, Gray JD. Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 2016;41(1):3-23. https://doi.org/10.1038/npp.2015.171
  39. Muneer A. Wnt and GSK3 signaling pathways in bipolar disorder: clinical and therapeutic implications. Clin Psychopharmacol Neurosci 2017;15(2):100-14. https://doi.org/10.9758/cpn.2017.15.2.100
  40. Cryan JF, Page ME, Lucki I. Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology (Berl) 2005;182(3):335-44. https://doi.org/10.1007/s00213-005-0093-5
  41. Takashima A. GSK-3β and memory formation. Front Mol Neurosci 2012;5:47. https://doi.org/10.3389/fnmol.2012.00047
  42. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977;229(2):327-36.
  43. Ghorbani MM, Farazmandfar T, Nasirikenari M, Abediankenari S, Meamarian A, Shahbazi M. Evaluation of IL-17 serum level, brain inflammation and demyelination in experimental autoimmune encephalomyelitis C57BL/6 mice model with different doses of myelin oligodendrocyte glycoprotein. Iran J Allergy Asthma Immunol 2019;18(3):300-9.
  44. Buc M. Role of regulatory T cells in pathogenesis and biological therapy of multiple sclerosis. Mediators Inflamm 2013;2013:963748. https://doi.org/10.1155/2013/963748
  45. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014;83(3):278-86. https://doi.org/10.1212/wnl.0000000000000560
  46. Van Kaer L, Postoak JL, Wang C, Yang G, Wu L. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell Mol Immunol 2019;16(6):531-9. https://doi.org/10.1038/s41423-019-0221-5
  47. Garg N, Smith TW. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav 2015;5(9):e00362.
  48. Chu F, Shi M, Zheng C, Shen D, Zhu J, Zheng X, Cui L. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 2018;318:1-7. https://doi.org/10.1016/j.jneuroim.2018.02.015
  49. Hatch MN, Schaumburg CS, Lane TE, Keirstead HS. Endogenous remyelination is induced by transplant rejection in a viral model of multiple sclerosis. J Neuroimmunol 2009;212(1e2):74-81. https://doi.org/10.1016/j.jneuroim.2009.05.002
  50. Kasper LH, Shoemaker J. Multiple sclerosis immunology: the healthy immune system vs the MS immune system. Neurology 2010;74(Suppl 1):S2-8. https://doi.org/10.1212/WNL.0b013e3181c97c8f
  51. Hwang I, Ahn G, Park E, Ha D, Song JY, Jee Y. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol Lett 2011;138(2):169-78. https://doi.org/10.1016/j.imlet.2011.04.005
  52. Bing SJ, Ha D, Hwang I, Park E, Ahn G, Song JY, Jee Y. Protective effects on central nervous system by acidic polysaccharide of panax ginseng in relapse-remitting experimental autoimmune encephalomyelitis-induced SJL/J mice. Am J Chin Med 2016;44(6):1099-110. https://doi.org/10.1142/S0192415X16500610
  53. Hossain MJ, Morandi E, Tanasescu R, Frakich N, Caldano M, Onion D, Faraj TA, Erridge C, Gran B. The soluble form of toll-like receptor 2 is elevated in serum of multiple sclerosis patients: a novel potential disease biomarker. Front Immunol 2018;9:457. https://doi.org/10.3389/fimmu.2018.00457
  54. Lee MJ, Chang BJ, Oh S, Nah SY, Cho IH. Korean Red Ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-kB signaling pathways. J Ginseng Res 2018;42:436-46. https://doi.org/10.1016/j.jgr.2017.04.013
  55. Cassilhas RC, Tufik S, de Mello MT. Physical exercise, neuroplasticity, spatial learning and memory. Cell Mol Life Sci 2016;73(5):975-83. https://doi.org/10.1007/s00018-015-2102-0
  56. Johnston MV. Plasticity in the developing brain: implications for rehabilitation. Dev Disabil Res Rev 2009;15(2):94-101. https://doi.org/10.1002/ddrr.64
  57. Gulyaeva NV. Molecular mechanisms of neuroplasticity: an expanding universe. Biochemistry (Mosc) 2017;82(3):237-42. https://doi.org/10.1134/S0006297917030014
  58. Jin Y, Peng J, Wang X, Zhang D, Wang T. Ameliorative effect of ginsenoside Rg1 on lipopolysaccharide-induced cognitive impairment: role of cholinergic system. Neurochem Res 2017;42(5):1299-307. https://doi.org/10.1007/s11064-016-2171-y
  59. Shaw CA, Lanius RA, van den Doel K. The origin of synaptic neuroplasticity: crucial molecules or a dynamical cascade? Brain Res Brain Res Rev 1994;19(3):241-63. https://doi.org/10.1016/0165-0173(94)90014-0
  60. Lyubimov II, Borzenkov VM, Chepurnova NE, Chepurnov SA. Effect of a polysaccharide fraction of ginseng root on learning and memory in rats (using an active escape response as an example). Neurosci Behav Physiol 1997;27(5):555-8. https://doi.org/10.1007/BF02463901
  61. Heo JH, Lee ST, Oh MJ, Park HJ, Shim JY, Chu K, Kim M. Improvement of cognitive deficit in Alzheimer's disease patients by long term treatment with Korean red ginseng. J Ginseng Res 2011;35(4):457-61. https://doi.org/10.5142/jgr.2011.35.4.457
  62. Xu T, Shen X, Yu H, Sun L, Lin W, Zhang C. Water-soluble ginseng oligosaccharides protect against scopolamine-induced cognitive impairment by functioning as an antineuroinflammatory agent. J Ginseng Res 2016;40(3):211-9. https://doi.org/10.1016/j.jgr.2015.07.007
  63. Halliwell B. Free radicals and antioxidants: a personal view. Nutr Rev 1994;52(8 Pt 1):253-65. https://doi.org/10.1111/j.1753-4887.1994.tb01453.x
  64. Huang J, Brumell JH. NADPH oxidases contribute to autophagy regulation. Autophagy 2009;5(6):887-9. https://doi.org/10.4161/auto.9125
  65. Patel M. Targeting oxidative stress in central nervous system disorders. Trends Pharmacol Sci 2016;37(9):768-78. https://doi.org/10.1016/j.tips.2016.06.007
  66. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. J Parkinsons Dis 2013;3(4):461-91. https://doi.org/10.3233/JPD-130230
  67. Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther 2017;360(1):201-5. https://doi.org/10.1124/jpet.116.237503
  68. Xiong X, Huang G, Huang H. The antioxidant activities of phosphorylated polysaccharide from native ginseng. Int J Biol Macromol 2019;126:842-5. https://doi.org/10.1016/j.ijbiomac.2018.12.266
  69. Chen F, Huang G. Antioxidant activity of polysaccharides from different sources of ginseng. Int J Biol Macromol 2019;125:906-8. https://doi.org/10.1016/j.ijbiomac.2018.12.134
  70. Yang X, Wang R, Zhang S, Zhu W, Tang J, Liu J, Chen P, Zhang D, Ye W, Zheng Y. Polysaccharides from Panax japonicus C.A. Meyer and their antioxidant activities. Carbohydr Polym 2014;101:386-91. https://doi.org/10.1016/j.carbpol.2013.09.038
  71. Ahn JY, Song JY, Yun YS, Jeong G, Choi IS. Protection of Staphylococcus aureusinfected septic mice by suppression of early acute inflammation and enhanced antimicrobial activity by ginsan. FEMS Immunol Med Microbiol 2006;46(2):187-97. https://doi.org/10.1111/j.1574-695X.2005.00021.x
  72. Kim MH, Byon YY, Ko EJ, Song JY, Yun YS, Shin T, Joo HG. Immunomodulatory activity of ginsan, a polysaccharide of panax ginseng, on dendritic cells. Korean J Physiol Pharmacol 2009;13(3):169-73. https://doi.org/10.4196/kjpp.2009.13.3.169
  73. Xing X, Cui SW, Nie S, Phillips GO, Douglas Goff H, Wang Q. A review of isolation process, structural characteristics, and bioactivities of water-soluble polysaccharides from Dendrobium plants. Bioactive Carbohydrates & Dietary Fibre. 2013;1(2):131-47. https://doi.org/10.1016/j.bcdf.2013.04.001
  74. Bramini M, Ye D, Hallerbach A, Nic Raghnaill M, Salvati A, Aberg C, Dawson KA. Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier. ACS Nano 2014;8(5):4304-12. https://doi.org/10.1021/nn5018523
  75. Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res 2014;355(3):687-99. https://doi.org/10.1007/s00441-014-1811-2
  76. Deli MA, Veszelka S, Csiszar B, Toth A, Kittel A, Csete M, Sipos A, Szalai A, Fulop L, Penke B. Protection of the blood-brain barrier by pentosan against amyloid-b-induced toxicity. J Alzheimers Dis 2010;22(3):777-94. https://doi.org/10.3233/JAD-2010-100759

Cited by

  1. Panax quinquefolius (North American Ginseng) Polysaccharides as Immunomodulators: Current Research Status and Future Directions vol.25, pp.24, 2021, https://doi.org/10.3390/molecules25245854
  2. Antioxidant Activity and Inhibitory Effect on Nitric Oxide Production of Hydroponic Ginseng Fermented with Lactococcus lactis KC24 vol.10, pp.10, 2021, https://doi.org/10.3390/antiox10101614