DOI QR코드

DOI QR Code

단일 롤 방법으로 제작한 3원계 Al-Cr-Si 급냉리본의 구조 및 열 특성

Structure and Thermal Properties of a Ternary Al-Cr-Si Quenching Ribbon Manufactured by Single Roll Method

  • 한창석 (호서대학교 자동차ICT공학과) ;
  • 김기웅 (호서대학교 자동차ICT공학과) ;
  • 김우석 (호서대학교 자동차ICT공학과)
  • Han, Chang-Suk (Dept. of ICT Automotive Engineering, Hoseo University) ;
  • Kim, Ki-Woong (Dept. of ICT Automotive Engineering, Hoseo University) ;
  • Kim, Woo-Suk (Dept. of ICT Automotive Engineering, Hoseo University)
  • 투고 : 2021.02.04
  • 심사 : 2021.05.05
  • 발행 : 2021.05.27

초록

Al-Cr-Si ternary quench ribbons are fabricated using a single roll method and investigated for their structural and thermal properties. In particular, the sinterability is examined by pulse current sintering to obtain the following results. The Al74Cr20Si6 composition becomes a quasicrystalline single phase; by reducing the amount of Cr, it becomes a two-phase mixed structure of Al phase and quasicrystalline phase. As a result of sintering of Al74Cr20Si6, Al77Cr13Si10 and Al90Cr6Si4 compositions, the sintering density is increased with the large amount of Al phase; the sintering density is the highest in Al90Cr6Si4 composition. In addition, as a result of investigating the effects of sintering temperature and pressurization on the sintered density of Al90Cr6Si4, a sintered compact of 99% or more at 513 K and 500 MPa is produced. In particular, since the Al-Cr-Si ternary crystal is more thermally stable than the Al-Cr binary quaternary crystal, it is possible to increase the sintering temperature by about 100 K. Therefore, using an alloy of Al90Cr6Si4 composition, a sintered compact having a sintered density of 99 % or more at 613 K and 250 MPa can be manufactured. It is possible to increase the sintering temperature by using the alloy system as a ternary system. As a result, it is possible to produce a sintered body with higher density than that possible using the binary system, and at half the pressure compared with the conventional Al-Cr binary system.

키워드

참고문헌

  1. A. Inoue, H. M. Kimura, K. Sasamori and T. Masumoto, Inter. J. Rapid Solidification, 9, 103 (1996).
  2. S. Mula, S. Ghosh and S. K. Pabi, Mater. Sci. Eng., A, 472, 208 (2008). https://doi.org/10.1016/j.msea.2007.03.048
  3. D. H. Ping, K. Hono and A. Inoue, Mater. Sci. Eng., A, 31, 607 (2000).
  4. E. G. Babakhani, J. Towfighi, L. Shirazi, A. Nakhaeipour, A. Zamaniyan and Z. Shafiei, J. Mater. Sci. Technol., 28, 177 (2012). https://doi.org/10.1016/S1005-0302(12)60039-5
  5. M. Ahmad, J. I. Akhter, M. Iqbal, M. Akhtar, E. Ahmed, S. Akhtar and M. A. Chaudhary, J. Nuclear Mater., 341, 164 (2005). https://doi.org/10.1016/j.jnucmat.2005.01.020
  6. F. Saporiti, M. Boudard and F. Audebert, J. Alloys Compd., 495, 309 (2010). https://doi.org/10.1016/j.jallcom.2009.12.001
  7. C. Zhang, Y. Wu, X. Cai, F. Zhao, S. Zheng, G. Zhou and S. Wu, Mater. Sci. Eng., A, 323, 226 (2002). https://doi.org/10.1016/S0921-5093(01)01353-3
  8. I. I. Tashlykova-Bushkevich and G. Itoh, Mater. Sci. Forum, 706-709, 301 (2012). https://doi.org/10.4028/www.scientific.net/MSF.706-709.301
  9. C. Chen, X. Feng and Y. Shen, J. Alloys Compd., 708, 639 (2017). https://doi.org/10.1016/j.jallcom.2017.03.082
  10. H. Zhang, Z. B. He, P. Oleynikov, X. D. Zou, S. Hovmoller and K. H. Kuo, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 62, 16 (2006). https://doi.org/10.1107/S0108768105035779
  11. G. F. Vander. Voort and J. Asensio-Lozano, Microsc. Microanal., 15, 60 (2009). https://doi.org/10.1017/S1431927609092642
  12. M. Tocci, M. Losio, P. Suwanpinij and A. Pola, J. Alloys Compd., 742, 555 (2018). https://doi.org/10.1016/j.jallcom.2018.01.337
  13. A. Yamamoto, J. Japan Inst. Light Metals, 60, 68 (2010). https://doi.org/10.2464/jilm.60.68