• Title/Summary/Keyword: quasicrystalline single phase

Search Result 2, Processing Time 0.016 seconds

Structure and Thermal Properties of a Ternary Al-Cr-Si Quenching Ribbon Manufactured by Single Roll Method (단일 롤 방법으로 제작한 3원계 Al-Cr-Si 급냉리본의 구조 및 열 특성)

  • Han, Chang-Suk;Kim, Ki-Woong;Kim, Woo-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.296-300
    • /
    • 2021
  • Al-Cr-Si ternary quench ribbons are fabricated using a single roll method and investigated for their structural and thermal properties. In particular, the sinterability is examined by pulse current sintering to obtain the following results. The Al74Cr20Si6 composition becomes a quasicrystalline single phase; by reducing the amount of Cr, it becomes a two-phase mixed structure of Al phase and quasicrystalline phase. As a result of sintering of Al74Cr20Si6, Al77Cr13Si10 and Al90Cr6Si4 compositions, the sintering density is increased with the large amount of Al phase; the sintering density is the highest in Al90Cr6Si4 composition. In addition, as a result of investigating the effects of sintering temperature and pressurization on the sintered density of Al90Cr6Si4, a sintered compact of 99% or more at 513 K and 500 MPa is produced. In particular, since the Al-Cr-Si ternary crystal is more thermally stable than the Al-Cr binary quaternary crystal, it is possible to increase the sintering temperature by about 100 K. Therefore, using an alloy of Al90Cr6Si4 composition, a sintered compact having a sintered density of 99 % or more at 613 K and 250 MPa can be manufactured. It is possible to increase the sintering temperature by using the alloy system as a ternary system. As a result, it is possible to produce a sintered body with higher density than that possible using the binary system, and at half the pressure compared with the conventional Al-Cr binary system.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.