DOI QR코드

DOI QR Code

Sediment Trap Studies to Understand the Oceanic Carbon Cycling: Significance of Resuspended Sediments

퇴적물 트랩을 이용한 해양 탄소 순환 연구 동향: 재부유 퇴적물의 중요성

  • KIM, MINKYOUNG (Marine Environmental Research Center, Korea Institute of Ocean Science and Technology)
  • 김민경 (한국해양과학기술원 해양환경연구센터)
  • Received : 2021.01.31
  • Accepted : 2021.04.26
  • Published : 2021.05.31

Abstract

For several decades, sediment traps have served as one of the key tools for constraining the biological carbon pump (BCP), a process that vertically exports particulate organic carbon (POC) and associated biogenic materials from marine primary production in surface waters to the deep ocean interior. In this paper, I introduced the general methods, the current status of global sediment trap studies, and importance of it to understand the deep ocean carbon cycling. Recent studies suggest that sinking POC in the deep ocean are more complex and spatio-temporally heterogeneous than we considered. Especially researches those studied resuspended and laterally transported particles are presented. Researches that used organic (radiocarbon; 14C) and inorganic (Al) tracers to understand the oceanic POC cycling and the significance of resuspended particles are reviewed, and the importance of radiocarbon study by using MICADAS (Mini radioCarbon Dating Systems) is emphasized.

지난 수십년 간 퇴적물 트랩은 해양 유기물과 관련된 생물학적 입자들의 수직적 이동인 생물학적 탄소 펌프(BCP: Biological Carbon Pump)를 이해하는 데 중요한 도구들 중 하나로 사용되어 왔다. 이 논문에서는 퇴적물 트랩을 이용한 해양 심층의 탄소 순환 연구 방법과 여러 해역에서의 연구 현황, 그리고 그 중요성에 대하여 고찰하였다. 한편 최근의 연구 중 몇몇은 심층으로 이동된 침강 입자유기탄소(POC: Particulate Organic Carbon)가 이전에 알려졌던 것 보다 더 복잡한 형태이고, 시공간적으로 다양한 기원을 가지고 있음을 밝혔다. 이 논문에서는 특히 침강 입자 중 재부유 퇴적물에 관해 연구한 최신 논문들을 정리하였다. 유기 추적자로 사용한 방사성탄소동위원소(14C)와 무기적 추적자(Al)를 해양 입자유기탄소 순환을 이해하고 재부유 퇴적물의 중요성을 파악하는 데 있어 어떻게 활용할 수 있을지 기술하였으며, 특히MICADAS (Mini radioCarbon Dating Systems)를 이용한 방사성탄소동위원소 연구의 중요성을 강조하였다.

Keywords

Acknowledgement

이 논문 작성에 도움을 주신 황점식, 김정현, 이신아, 김미선, 그리고 원고를 읽고 유익한 조언을 주신 심사위원께 감사드립니다. 이 논문은 2019, 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(국내외박사후 연수사업: 2019R1A6A3A03031671, 2020R1A6A3A01095893) 연구입니다.

References

  1. 권은영, 조양기, 2013. 해양 생물 펌프가 대기 중 이산화탄소에 미치는 영향 그리고 기후 변동과의 연관성. 한국해양학회지 「바다」, 18(4): 266-276.
  2. 김형직, 김동선, 형기성, 김경홍, 손주원, 황상철, 지상범, 김기현, 김부근, 2008. 북동태평양 심해에서 관측된 퇴적물 입자 플럭스의 계절적 변동. 한국해양학회지 「바다」, 13(3): 200-209.
  3. 석문식, 2002. 동해 기후변동 예측 연구 2차연도 연차보고서. 한국해양연구원 BSPE 817-00-1319-1.
  4. 황점식, 2012. 방사성탄소를 이용한 해양 유기탄소 순환 연구 동향. 한국해양학회지 「바다」, 17(3): 189-201.
  5. Armstrong, R.A., C. Lee, J.I. Hedges, S. Honjo and S.G. Wakeham, 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Research II, 49: 219-236.
  6. Anderson, R.F., G.T. Rowe, P.F. Kemp, S. Trumbore and P.E. Biscaye, 1994. Carbon budget for the mid-slope depocenter of the Middle Atlantic Bight. Deep-Sea Res.-II, 41: 669-703.
  7. Anderson, N.D., K.A. Donohue, M.C. Honda, M.F. Cronin and D. Zhang, 2020. Challenges of Measuring Abyssal Temperature and Salinity at the Kuroshio Extension Observatory. J. Atmos. Ocean. Technol., 37(11): 1999-2014. https://doi.org/10.1175/JTECH-D-19-0153.1.
  8. Andres, M., J.M. Toole, D.J. Torres, W. M. Smethie Jr., T.M. Joyce and R.G. Curry, 2016. Stirring by deep cyclones and the evolution of Denmark strait overflow water observed at line W. Deep-sea Res. I, 109: 10-26. https://doi.org/10.1016/j.dsr.2015.12.011
  9. Bao, R., C. McIntyre, M. Zhao, C. Zhu, S.J. Kao and T.I. Eglinton, 2016. Widespread dispersal and aging of organic carbon in shallow marginal seas. Geology, 44: 791-794. https://doi.org/10.1130/G37948.1
  10. Bao, R., T.M. Blattmann, C. McIntyre, M. Zhao and T.I. Eglinton, 2019. Relationships between grain size and organic carbon 14C heterogeneity in continental margin sediments. Earth Planet. Sci. Lett., 505: 76-85. https://doi.org/10.1016/j.epsl.2018.10.013
  11. Bale, A.J. 1998. Sediment trap performance in tidal waters: comparison of cylindrical and conical collectors. Cont. Shelf Res., 18(11): 0-1418. doi:10.1016/s0278-4343(98)00050-8.
  12. Baker, C.A., M.L. Estapa, M. Iversen, R. Lampitt and K. Buesseler, 2020. Are all sediment traps created equal? An intercomparison study of carbon export methodologies at the PAP-SO site. Progress in Oceanography, 184: 102317. https://doi.org/10.1016/j.pocean.2020.102317.
  13. Bauer, J.E. and E.R.M. Druffel, 1998. Ocean margins as a significant source of organic matter to the deep ocean. Nature, 392: 482-484. https://doi.org/10.1038/33122
  14. Berelson, W.M., 2002. Particle settling rates increase with depth in the ocean. Deep-Sea Res. II, 49: 237-251. https://doi.org/10.1016/S0967-0645(01)00102-3
  15. Blattmann, T.M., Y. Zhang, Y. Zhao, K. Wen, S. Lin, J. Li, L. Wacker, N. Haghipour, M. Plotze, Z. Liu and T.I. Eglinton, 2018a. Contrasting fates of petrogenic and biospheric carbon in the South China Sea. Geophys. Res. Lett., 45: 9077-9086. https://doi.org/10.1029/2018gl079222
  16. Blattmann, T.M, M. Wessels, C. McIntyre and T.I. Eglinton, 2018b. Projections for Future Radiocarbon Content in Dissolved Inorganic Carbon in Hardwater Lakes: A Retrospective Approach. Radiocarbon, 60(3): 791-800. doi:10.1017/RDC.2018.12.
  17. Blattmann, T.M., Z. Liu, Y. Zhang, Y. Zhao, N. Haghipour, D. B. Montlucon, M. Plotze and T. I. Eglinton, 2019. Mineralogical control on the fate of continentally derived organic matter in the ocean. Science, 366: 742-745. https://doi.org/10.1126/science.aax5345
  18. Bock, M.J. and L.M. Mayer, 2000. Mesodensity organo-clay associations in a nearshore sediment. Mar. Geol. 163: 65-75. https://doi.org/10.1016/S0025-3227(99)00105-X
  19. Buesseler K.O., 1991. Do upper-ocean sediment traps provide an accurate record of particle flux?. Nature, 353(6343): 420-423. 10.1038/353420a0.
  20. Buesseler, K.O., C.H. Lamborg, P.W. Boyd, P.J. Lam, T.W. Trull, R.R. Bidigare, J.K.B. Bishop, K.L. Casciotti, F. Dehairs, M. Elskens, M. Honda, D.M. Karl, D.A. Siegel, M.W. Silver, D.K. Steinberg, B.V. Valdes J, Mooy and S. Wilson, 2007a. Revisiting carbon flux through the ocean's twilight zone. Science, 316: 567-570. https://doi.org/10.1126/science.1137959
  21. Buesseler, K.O., A.N. Antia, M. Chen, S.W. Fowler, W.D. Gardner, O. Gustafsson, K. Harada, A.F. Michaels, M. Rutgers van der Loeff, M. Sarin, D.K. Steinberg and T. Trull, 2007b. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J. Mar. Res., 65: 345-416. https://doi.org/10.1357/002224007781567621
  22. Buesseler, K.O., A.M. McDonnell, O.M. Schofield, D.K. Steinberg and H.W. Ducklow, 2010. High particle export over the continental shelf of the west Antarctic Peninsula. Geophys. Res. Lett., 37: L22606. https://doi.org/10.1029/2010GL045448
  23. Butman, C.A. 1986. Sediment trap biases in turbulent flows: Results from a laboratory flume study. J. Mar. Res., 44, 645-693. https://doi.org/10.1357/002224086788403051
  24. Casacuberta, N., M. Castrillejo, A. Wefing, S. Bollhalder and L. Wacker, 2020. High Precision 14C Analysis in Small Seawater Samples. Radiocarbon, 62(1): 13-24. doi:10.1017/RDC.2019.87.
  25. Cavan, E.L., A. Belcher, A. Atkinson, S.L. Hill, S. Kawaguchi, S. McCormack, B. Meyer, S. Nicol, L. Ratnarajah, K. Schmidt, D.K. Steinberg, G.A. Tarling and P.W. Boyd, 2019. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10: 4742. https://doi.org/10.1038/s41467-019-12668-7.
  26. Chang, K.I., N.G. Hogg, M.S. Suk, S.K. Byun, Y.G. Kim and K. Kim, 2002. Mean flow and variability in the southwestern East Sea. Deep Sea Res. I., 49: 2261-2279. https://doi.org/10.1016/S0967-0637(02)00120-6
  27. Conte, M.H., N. Ralph and E.H. Ross, 2001. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda. Deep-Sea Res. II, 48: 1471-1505. https://doi.org/10.1016/S0967-0645(00)00150-8
  28. Conte, M.H. and J.C. Weber, 2014. Particle flux in the deep Sargasso Sea: The 35-year Ocean Flux Program time series. Oceanography, 27: 142-147. https://doi.org/10.5670/oceanog.2014.17
  29. Conte, M.H., 2019. Oceanic Particle Flux. In Cochran, J. Kirk; Bokuniewicz, J. Henry; Yager, L. Patricia (eds.) Encyclopedia of Ocean Sciences, 3rd Edition, vol. [4], pp. 192-200. Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11481-2.
  30. Cram, J.A., T. Weber, S.W. Leung, A.M.P. McDonnell, J.H. Liang and C. Deutsch, 2018. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Global Biogeochem. Cycles, 32: 858-876. https://doi.org/10.1029/2017GB005710
  31. Cummins, P.F. and G.S.E. Lagerloef, 2004. Wind-driven interannual variability over the northeast Pacific Ocean. Deep-Sea Res. I., 51: 2105-2121. https://doi.org/10.1016/j.dsr.2004.08.004
  32. Dickens, A.F., J.A. Baldock, R.J. Smernik, S.G. Wakeham, T.A. Arnarson, Y. Gelinas and J.I. Hedges, 2006. Solid state 13C NMR analysis of size and density fractions of marine sediments. Insights into carbon sources and preservation mechanisms. Geochim. Cosmochim. Acta., 70: 666-686. https://doi.org/10.1016/j.gca.2005.10.024
  33. Druffel, E.R.M. and P.M. Williams, 1990. Identification of a deep marine source of particulate organic carbon using bomb 14C. Nature, 347: 172-174. https://doi.org/10.1038/347172a0
  34. Ducklow, H.W., M. Erickson, J. Kelly, M. Montes-Hugo, C.A. Ribic, R.C. Smith, S.E. Stammerjohn, D.M. Karl, 2008. Particle export from the upper ocean over the continental shelf of the west Antarctic Peninsula: A long-term record, 1992-2006. Deep Sea Res., Part II, 55: 2118-2131. https://doi.org/10.1016/j.dsr2.2008.04.028
  35. Ducklow, H.W., M. Erickson, S. Lee, K. Lowry, A. Post, R. Sherrell, S. Stammerjohn, S. Wilson and P. Yager, 2015. Particle flux on the continental shelf in the Amundsen Sea Polynya and Western Antarctic Peninsula. Elementa 3, 000046. https://doi.org/10.12952/journal.elementa.000046.
  36. Dunbar, R.B., A.R. Leventer and W.L. Stockton, 1989. Biogenic sedimentation in McMurdo Sound, Antarctica. In: R.D. Powell and A. Elverhoi (Editors), Modern Glacimarine Environments: Glacial and Marine Controls of Modern Lithofacies and Biofacies. Mar. Geol., 85: 155-179. https://doi.org/10.1016/0025-3227(89)90152-7
  37. Dunne, J.P., J.L. Sarmiento and A. Gnanadesikan, 2007. A synthesis of particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles 21 GB 4006.
  38. Eglinton, T.I., G. Eglinton, L. Dupont, E.R. Sholkovitz, D. Montlucon, C.M. Reddy, 2002. Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean. Geochem., Geophys., Geosyst., 3. doi:10.1029/2001GC000269.
  39. Estapa, M., J. Valdes, K. Tradd, J. Sugar, M. Omand and K. Buesseler, 2020. The Neutrally Buoyant Sediment Trap: Two Decades of Progress. J. Atmos. Oceanic Technol., 37: 957-973, https://doi.org/10.1175/JTECH-D-19-0118.1.
  40. Feng, X, O. Gustafsson, R.M. Holmes, J.E, Vonk, B.E. van Dongen, I.P. Semiletov, O.V. Dudarev, M.B. Yunker, R.W. Macdonald, L. Wacker, D.B. Montlucon, T.I. Eglinton, 2015. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls. Global Biogeochem. Cycles doi: 10.1002/2015GB005204.
  41. Fischer, G, G. Wefer, O. Romero, N. Dittert, V. Ratmeyer, B. Donner, 2003. Transfer of particles into the deep Atlantic and global ocean: Control of nutrient supply and ballast production. In: The South Atlantic in the Late Quaternary: Reconstruction of material budgets and current systems (Eds. G. Wefer, S. Mulitza and V. Ratmeyer), pp 21-46. Springer-Verlag.
  42. Forest, A., S. Belanger, M. Sampei, H. Sasaki, C. Lalande and L. Fortier, 2010. Three-year assessment of particulate organic carbon fluxes in Amundsen Gulf (Beaufort Sea): satellite observations and sediment trap measurements. Deep Sea Res. Part I, 57: 125-142. doi: 10.1016/j.dsr.2009.10.002.
  43. Francois, R, S. Honjo, R. Krishfield, S.J. Manganini, 2002. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Global Biogeochem. Cycles, 16: 1087. doi:1010.1029/2001GB001722.
  44. Gardner, W.D. 1980. Sediment trap dynamics and calibration, a laboratory evaluation. J. Mar. Res., 38: 17-39.
  45. Gardner, W.D., 2000. Sediment trap sampling in surface waters. The Changing Ocean Carbon Cycle: A Midterm Synthesis of the Joint Global Ocean Flux Study, pp. 240-284.
  46. Gardner, W.D., M.J. Richardson and A.V. Mishonov, 2018. Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics. Earth Planet. Sci. Lett., 482: 126-144. https://doi.org/10.1016/j.epsl.2017.11.008
  47. Gehlen, M., L. Bopp, N. Emprin, O. Aumont, C. Heinze and O. Ragueneau, 2006. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model. Biogeosciences, 3: 521-537. https://doi.org/10.5194/bg-3-521-2006
  48. Giering, S.L.C., R. Sanders, R.S. Lampitt, T.R. Anderson, C. Tamburini, M. Boutrif, M.V. Zubkov, C.M. Marsay, S.A. Henson, K. Saw, K. Cook and D.J. Mayor, 2014. Reconciliation of the carbon budget in the ocean's twilight zone. Nature, 507(7493): 480-483. https://doi.org/10.1038/nature13123
  49. Gies, H., F. Hagedorn, M. Lupker, D. Montlucon, N. Haghipour, T.S. van der Voort and T.I. Eglinton, 2021. Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: 14C-based evidence for stabilization of microbial necromass, Biogeosciences, 18: 189-205. https://doi.org/10.5194/bg-18-189-2021.
  50. Godwin, H., 1962. Radiocarbon dating. Nature, 195: 943-945. https://doi.org/10.1038/195943a0
  51. Goldstein, S.L. and S.R. Hemming, 2003. Long-lived isotopic tracers in oceanography, paleoceanography and ice-sheet dynamics, in The oceans and marine geochemistry, edited by H. Elderfield, pp. 453-489, Ensevier, New York.
  52. Goni, M.A., M.B. Yunker, R.W. Macdonald and T.I. Eglinton, 2005. The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean. Mar. Chem. 93: 53-73. https://doi.org/10.1016/j.marchem.2004.08.001
  53. Goto, N., K. Hisamatsu, C. Yoshimizu and S. Ban, 2016. Effectiveness of preservatives and poisons on sediment trap material in freshwater environments. Limnology, 17: 87-94, https://doi.org/10.1007/s10201-015-0467-2.
  54. Graven, H., 2015. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proc. Nat. Acad. Sci., 112: 9542-9545. https://doi.org/10.1073/pnas.1504467112
  55. Grousset, F.E., F. Henry, J.F. Minster and A. Monaco, 1990. Nd isotopes as tracers in water column particles: the western Mediterranean Sea. Mar. Chem., 30: 389-407. https://doi.org/10.1016/0304-4203(90)90083-O
  56. Gust, G., W. Bowles, S. Giordano and M. Huettel. 1996. Particle accumulation in a cylindrical sediment trap under laminar and turbulent steady flow, An experimental approach. Aquatic Sci., 58: 297-326. https://doi.org/10.1007/BF00877473
  57. Haghipour, N., B. Ausin, M.O. Usman, N. Ishikawa, L. Wacker, C. Welte, K. Ueda and T.I. Eglinton, 2019. Compound-Specific Radiocarbon Analysis by Elemental Analyzer-Accelerator Mass Spectrometry: Precision and Limitations. Anal. Chem., 91: 2042-2049. doi: 10.1021/acs.analchem.8b04491.
  58. Hanke, U.M., L. Wacker, N. Haghipour, M.W. Schmidt, T.I. Eglinton and C.P. McIntyre, 2017. Comprehensive Radiocarbon analysis of benzene polycarboxylic acids (BPCAs) derived from pyrogenic carbon in environmental samples. Radiocarbon, 59(4): 1103-1116. doi:10.1017/RDC.2017.44.
  59. Harms, N.C., N. Lahajnar, B. Gaye, T. Rixen, U. Schwarz-Schampera and K.C Emeis, 2021. Sediment trap-derived particulate matter fluxes in the oligotrophic subtropical gyre of the South Indian Ocean, Deep Sea Res.-II, 104924, doi.org/10.1016/j.dsr2.2020.104924.
  60. Hedges, J.I., J.A. Baldock, Y. Gelinas, C. Lee, M. Peterson, M. and S.G. Wakeham, 2001. Evidence for non-selective preservation of organic matter in sinking marine particles. Nature, 409, 801-804. https://doi.org/10.1038/35057247
  61. Hegner, E., H.J. Dauelsberg, M.M.R. van der Loeff, C. Jeandel and H.J.W. de Baar, 2007. Nd isotopic constraints on the origin of suspended particles in the Atlantic Sector of the Southern Ocean, Geochem., Geophys., Geosyst., 8, Q10008, doi:10.1029/2007GC001666.
  62. Herndl, G.J. and T. Reinthaler, 2013. Microbial control of the dark end of the biological pump. Nature Geosci., 6: 718-724. https://doi.org/10.1038/ngeo1921
  63. Heussner, S., C. Ratti and J. Carbonne, 1990. The PPS 3 time-series sediment trap and the trap sample processing techniques used during the ECOMARGE experiment. Cont. Shelf Res., 10(9-11): 943-958. doi:10.1016/0278-4343(90)90069-X.
  64. Honda, M.C., M. Kusakabe, S. Nakabayashi and M. Katagiri, 2000. Radiocarbon of sediment trap samples from the Okinawa trough: lateral transport of 14C-poor sediment from the continental slope. Mar. Chem., 68: 231-247. https://doi.org/10.1016/S0304-4203(99)00080-8
  65. Honda, M. C. and S. Watanabe, 2010. Importance of biogenic opal as ballast of particulate organic carbon (POC) transport and existence of mineral ballast-associated and residual POC in the Western Pacific Subarctic Gyre. Geophys. Res. Lett., 37: L02605. doi: 10.1029/2009GL041521.
  66. Honda, M.C., Y. Sasai, E. Siswanto, A. Kuwano-Yoshida, H. Aiki and M. F. Cronin, 2018. Impact of cyclonic eddies and typhoons on biogeochemistry in the oligotrophic ocean based on biogeochemical/physical/meteorological time series at station KEO. Prog. Earth Planet. Sci., 5: 42, https://doi.org/10.1186/s40645-018-0196-3.
  67. Honda, M.C., 2020. Effective Vertical Transport of Particulate Organic Carbon in the Western North Pacific Subarctic Region. Front. Earth Sci., 8: 366. doi:10.3389/feart.2020.00366.
  68. Hong, G.H., M. Baskaran, H.K. Lee and S.H. Kim, 2008a. Sinking Fluxes of Particulate U-Th Radionuclides in the East Sea (Sea of Japan), J Oceanogr, 64: 267-276. https://doi.org/10.1007/s10872-008-0021-5
  69. Hong, G.H., Y.I. Kim, M. Baskaran, S.H. Kim and C.S. Chung, 2008b. Distribution of 210Po and export of organic carbon from the euphotic zone in the southwestern East Sea (Sea of Japan). J Oceanogr, 64:277-292. https://doi.org/10.1007/s10872-008-0022-4
  70. Honjo, S.J.F. Connell and P.L. Sachs, 1980. Deep-ocean sediment trap; design and function of PARFLUX Mark II. Deep-Sea Res. I. 27(9): 745-753. doi:10.1016/0198-0149(80)90026-6.
  71. Honjo, S., S.J. Manganini and J.J. Cole, 1982. Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res. I. 29: 609-625. https://doi.org/10.1016/0198-0149(82)90079-6
  72. Honjo, S., S.J. Manganini, R.A. Krishfield, R. Francois, 2008. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. Progr. Oceanogr, 76: 217-285. https://doi.org/10.1016/j.pocean.2007.11.003
  73. Honjo, S., R. Francois, S.J. Manganini, J. Dymond and R. Collier, 2000. Particle fluxes to the interior of the Southern Ocean in the Western Pacific sector along 170°W. Deep-Sea Res. II., 47: 3521-3548. https://doi.org/10.1016/S0967-0645(00)00077-1
  74. Honjo, S., T.I. Eglinton, C.D. Taylor, K.M. Ulmer, S.M. Sievert, A. Bracher, C.R. German, V. Edgcomb, R. Francois, M.D. Iglesias-Rodriguez, B. voan Mooy and D.J. Repeta, 2014. Understanding the Role of the Biological Pump in the Global Carbon Cycle: An Imperative for Ocean Science. Oceanography, 27(3):10-16. https://doi.org/10.5670/oceanog.2014.78
  75. Hwang, J., E.R.M. Druffel, S. Griffin, K.L. Smith Jr., R.J. Baldwin and J.E. Bauer, 2004. Temporal variability of Δ14C, δ13C, and C/N in sinking particulate organic matter at a deep time series station in the northeast Pacific Ocean, Global Biogeochem. Cycles, 18, GB4015, doi:10.1029/2004GB002221.
  76. Hwang, J., T.I. Eglinton, R.A. Krishfield and S.J. Manganini, 2008. Lateral organic carbon supply to the deep Canada Basin. Geophys. Res. Lett., 35: L11607. https://doi.org/10.1029/2008GL034271
  77. Hwang, J., S.J. Manganini, D.B. Montlucon and T.I. Eglinton, 2009. Dynamics of particle export on the Northwest Atlantic margin, Deep-Sea Res. I, 56: 1792-1803. https://doi.org/10.1016/j.dsr.2009.05.007
  78. Hwang, J., E.R.M. Druffel and T.I. Eglinton, 2010. Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon contents in sinking particles. Global Biogeochem. Cycles, 24, GB4016, doi:10.1029/2010GB003802.
  79. Hwang, J., M. Kim, S.J. Manganini, C.P. McIntyre, N. Haghipour, J.J. Park, R.A. Krishfield, R.W. Macdonald, F.A. McLaughlin and T.I. Eglinton, 2015. Temporal and spatial variability of particle transport in the deep Arctic Canada Basin. J. Geophys. Res. Oceans, 120: 2784-2799, doi:10.1002/2014JC010643.
  80. Hwang, J., S.J. Manganini, J. Park, D.B. Montlucon, J.M. Toole and T.I. Eglinton, 2017. Biological and physical controls on the flux and characteristics of sinking particles on the Northwest Atlantic margin. J. Geophys. Res. Oceans, 122: 4539-4553. doi:10.1002/2016JC012549.
  81. Hwang, J., J. Blusztajn, L. Giosan, M. Kim, S.J. Manganini, D.B. Montlucon, J.M. Toole and T.I. Eglinton, 2020. Lithogenic particle transport trajectories on the northwest Atlantic margin J. Geophys. Res. Oceans, 126(1). https://doi.org/10.1029/2020JC016802.
  82. Huffard, C.L., C.A. Durkin, S.E.Wilson, P.R. McGill, R. Henthorn and K.L. Smith, 2020. Temporally-resolved mechanisms of deep-ocean particle flux and impact on the seafloor carbon cycle in the northeast Pacific. Deep-Sea Res. II, 173: 104763. doi:10.1016/j.dsr2.2020.104763.
  83. Hughen, K., S. Lehman, J. Southon, J. Overpeck, O. Marchal, C. Herring and J. Turnbull, 2004. 14C Activity and global carbon cycle changes over the past 50000 years, Science, 303: 202- 207, doi:10.1126/science.1090300.
  84. IPCC, W., 2013. Climate Change 2013: The Physical Science Basis. (T. F. Stocker, D. Qin, G.-K. Plattner, M. B. Tignor, S. K. Allen, J. Boschung, et al., Eds.) Contribution of Working Group I to the Fifth Assessment, Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1-1552 pp.
  85. Ishikawa, N.F., Y. Itahashi, T.M. Blattmann, Y. Takano, N.O. Ogawa, M. Yamane, Y. Yokoyama, T. Nagata, M. Yoneda, N. Haghipour, T.I. Eglinton and N. Ohkouchi, 2018. Improved Method for Isolation and Purification of Underivatized Amino Acids for Radiocarbon Analysis. Anal. Chem., 90(20): 12035-12041. https://doi.org/10.1021/acs.analchem.8b02693
  86. Jacobsen, S.B. and G.J. Wasserburg, 1980. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett., 50: 139-155. https://doi.org/10.1016/0012-821X(80)90125-9
  87. Jahnke, R.A., 1996. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Global Biogeochem. Cycles, 10: 71-88. https://doi.org/10.1029/95GB03525
  88. Jeandel, C., T. Arsouze, F. Lacan, P. Techine and J.C. Dutay, 2007. Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: A compilation, with an emphasis on the margins, Chem. Geol., 239:156-164. https://doi.org/10.1016/j.chemgeo.2006.11.013
  89. Jonell, T.N., Y. Li, J. Blusztajn, L. Giosan and P.D. Clift, 2018. Signal or noise? Isolating grain size effects on Nd and Sr isotope variability in Indus delta sediment provenance, Chem. Geol., 485: 56-73. https://doi.org/10.1016/j.chemgeo.2018.03.036
  90. Jurg, B., 1996. Towards a new generation of sediment traps and a better measurement/understanding of settling particle flux in lakes and oceans: A hydrodynamical protocol. Aquat. Sci., 58(4): 283-296. https://doi.org/10.1007/BF00877472
  91. Kelly, T.B., P.C. Davison, R. Goericke, M.R. Landry, M.D. Ohman and M.R. Stukel, 2019. The Importance of Mesozoo-plankton Diel Vertical Migration for Sustaining a Mesopelagic Food Web. Front. Mar. Sci., 6(508). doi:10.3389/fmars.2019.00508.
  92. Kim, D., J.H. Jeong, T.W. Kim, J.H. Noh, H.J. Kim, D.H. Choi, E. Kim and D. Jeon, 2017. The reduction in the biomass of cyanobacterial N2 fixer and the biological pump in the Northwestern Pacific Ocean. Sci. Rep., 7: 41810. doi:10.1038/srep41810.
  93. Kim, H.J., D. Kim, C.M. Yoo, S.B. Chi, B.K. Khim, H.R. Shin and K. Hyeong, 2011. Influence of ENSO variability on sinking-particle fluxes in the northeastern equatorial Pacific. Deep-Sea Res.-I, 58(8): 865-874. doi:10.1016/j.dsr.2011.06.007.
  94. Kim, H.J., K. Hyeong, J.Y. Park, J.H. Jeong, D. Jeon, E. Kim and D. Kim, 2014. Influence of Asian monsoon and ENSO events on particle fluxes in the western subtropical Pacific. Deep-Sea Res.-I, 90: 139-151. doi:10.1016/j.dsr.2014.05.002.
  95. Kim, H.J, T.W. Kim, K. Hyeong, S.W. Yeh, J.Y. Park, C.M. Yoo and J. Hwang, 2019. Suppressed CO2 outgassing by an enhanced biological pump in the Eastern Tropical Pacific. J. Geophys. Res., 124: 7962-7973. doi: 10.1029/2019JC015287.
  96. Kim, H.J., H.J. Kim E.J. Yang, K.H. Cho, J.Y. Jung, S.H. Kang, K.E. Lee, S. Cho and D.S. Kim, 2021. Temporal and Spatial Variations in Particle Fluxes on the Chukchi Sea and East Siberian Sea Slopes From 2017 to 2018. Front. Mar. Sci., 7: 609748. doi: 10.3389/fmars.2020.609748
  97. Kim, M., J. Hwang, H.J. Kim, D. Kim, E.J. Yang, H.W. Ducklow, S. La, S.H. Lee, J. Park and S. Lee, 2015. Sinking particle flux in the sea ice zone of the Amundsen shelf, Antarctica, Deep-Sea Res.-I, 101: 110-117. https://doi.org/10.1016/j.dsr.2015.04.002
  98. Kim, M., J. Hwang, T. Rho, T. Lee, D.J. Kang, K.I. Chang, S. Noh, H. Joo, J.H. Kwak, C.K. Kang and K.R. Kim, 2017. Biogeochemical properties of sinking particles in the southwestern part of the East Sea (Japan Sea). J. Mar. Sys., 167: 33-42. https://doi.org/10.1016/j.jmarsys.2016.11.001
  99. Kim, M., E.J. Yang, D. Kim, J.H. Jeong, H.J. Kim, J. Park, J. Jung, H.W. Ducklow, S. Lee and J. Hwang, 2019a. Sinking particle flux and composition and three sites of different annual sea ice cover in the Amundsen Sea, Antarctica. J. Mar. Sys., 192: 42-50. https://doi.org/10.1016/j.jmarsys.2019.01.002
  100. Kim, M., E.J. Yang, H.J. Kim, D. Kim, T.W. Kim, H.S. La, S.H. Lee and J. Hwang, 2019b. Collection of large benthic invertebrates in sediment traps in the Amundsen Sea, Antarctica Biogeosciences, 16: 2683-2691. https://doi.org/10.5194/bg-16-2683-2019
  101. Kim, M., J. Hwang, T.I. Eglinton and E.R.M. Druffel, 2020a. Lateral particle supply as a key vector in the oceanic carbon cycle, Global Biogeochem. Cycles, 34. https://doi.org/10.1029/2020GB006544.
  102. Kim, M., Y.I. Kim, J. Hwang, K.Y. Choi, C.J. Kim, Y. Ryu, J.E. Park, K.A. Park, J.H. Park, S. Nam, N. Haghipour and T.I. Eglinton, 2020b. Influence of sediment resuspension on the biological pump of the southwestern East Sea (Japan Sea), Front. Earth Sci. 8(144). DOI: 10.3389/feart.2020.00144.
  103. Knap, A., A. Michaels, A. Close, H.W. Ducklow and A. Dickson, 1996. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. JGOFS Report Nr., 19: 155-162.
  104. Knauer, G.A., D.M. Karl, J.H. Martin and C.N. Hunter, 1984. In situ effects of selected preservatives on total carbon, nitrogen and metals collected in sediment traps. J Mar Res, 42: 445-462. https://doi.org/10.1357/002224084788502710
  105. Lam, P. J., S.C. Doney and J.K. Bishop, 2011. The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic. Glob. Biogeochem. Cy., 25. doi.org/10.1029/2010GB003868.
  106. Le Bras, L.A., S.R. Jayne and J.M. Toole, 2018. The interaction of recirculation gyres and a deep boundary current, J. Phys. Oceanogr, 48: 573-590. doi: 10.1175/JPO-D-17-0206.1.
  107. Lee, C., J.I. Hedges, S.G. Wakeham and Z. Ningli, 1992. Effectiveness of various treatments in retarding microbial activity in sediment trap material and their effects on the collection of swimmers. Limnol Oceanogr, 37:117-130. https://doi.org/10.4319/lo.1992.37.1.0117
  108. Lee, C., D.W. Murray, R.T. Barber, K.O. Buesseler, J. Dymond, J. Hedges, S. Honjo, S.J. Manganini, J. Marra, C. Moser, M.L. Peterson, W.L. Prell and S. Wakeham, 1998. Particulate organic carbon fluxes: compilation of results from the 1995 U.S. JGOFS Arabian Sea Process Study. Deep-Sea Res. II, 45: 2489-2501. https://doi.org/10.1016/S0967-0645(98)00079-4
  109. Lee, S.H. 2012. The Amundsen Sea Expedition 2012 (ANA02C): IBRV Araon, 31 January 2012-20 March 2012. Korea Polar Research Institute, Incheon. 140 p.
  110. Le Moigne, F.A.C., K. Pabortsava, C.L.J. Marcinko, P. Martin and R.J. Sanders, 2014. Where is mineral ballast important for surface export of particulate organic carbon in the ocean? Geophys. Res. Lett., 41: 8460-8468. https://doi.org/10.1002/2014GL061678
  111. Levin, I. and V. Hesshaimer, 2000. Radiocarbon-a unique tracer of global carbon cycle dynamics. Radiocarbon, 42: 69-80. https://doi.org/10.1017/s0033822200053066
  112. Lin, B., Z. Liu, T.I. Eglinton, S. Kandasamy, T.M. Blattmann, M. Haghipour and G.J. de Lange, 2019. Perspectives on provenance and alteration of suspended and sedimentary organic matter in the subtropical Pearl River system, South China. Geochim. Cosmochim. Acta., 259: 270-287. https://doi.org/10.1016/j.gca.2019.06.018.
  113. Lima, I.D., P.J. Lam and S.C. Doney, 2014. Dynamics of particulate carbon flux in a global ocean. Biogeosci., 11: 1177-1198. https://doi.org/10.5194/bg-11-1177-2014
  114. Lutz, M., Dunbar R. and K. Caldeira, 2002. Ragional variability in the vertical flux of particulate organic carbon in the ocean interior. Global Biogeochem. Cycles, 16(3). https://doi.org/10.1029/2000GB001383.
  115. Marsay, C.M., R.J. Sanders, S.A. Henson, K. Pabortsava, E.P. Achterberg and R.S. Lampitt, 2015. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. Proc. Nat. Acad. Sci., 112: 1089-1094. https://doi.org/10.1073/pnas.1415311112
  116. McDonnell, A.M.P. and K.O. Buesseler, 2010. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr, 55: 2085-2096. https://doi.org/10.4319/lo.2010.55.5.2085
  117. McIntyre, C.P., L. Wacker, N. Haghipour, T.M. Blattmann, S. Fahrni, M. Usman, T.I. Eglinton and H.A. Synal, 2017. Online 13C and 14C gas measurements by EA-IRMS-AMS at ETH Zurich. Radiocarbon, 59: 893-903. https://doi.org/10.1017/rdc.2016.68
  118. McNichol, A.P. and L.I. Aluwihare, 2007. The power of radiocarbon in biogeochemical studies of the marine carbon cycle: Insights from studies of dissolved and particulate organic carbon (DOC and POC). Chem. Rev., 107: 433-466.
  119. Miquel, J.C., J. Martin, B. Gasser, A.R. Baena; T. Toubal and S.W. Fowler, 2011. Dynamics of particle flux and carbon export in the northwestern Mediterranean Sea: A two decade time-series study at the DYFAMED site. Prog. Oceanogr, 91(4): 461-481. doi:10.1016/j.pocean.2011.07.018.
  120. Montes, E., F. Muller-Karger, R. Thunell, D. Hollander, Y. Astor, R. Varela, I. Soto, Lorenzoni, 2012. Vertical fluxes of particulate biogenic material through the euphotic and twilight zones in the Cariaco Basin, Venezuela. Deep-Sea Res. I, 67: 73-84. https://doi.org/10.1016/j.dsr.2012.05.005
  121. Muller-Karger, F.E., Y.M. Astor, C.R. Benitez-Nelson, K.N. Buck, K.A. Fanning, L. Lorenzoni, E. Montes, D.T. Rueda-Roa, M.I. Scranton, E. Tappa, G.T. Taylor, R.C. Thunell, L. Troccoli and R. Varela, 2019. The scientific legacy of the CARIACO ocean time-series program. Ann. Rev. Mar. Sci., 11: 413-437. https://doi.org/10.1146/annurev-marine-010318-095150
  122. Noh, S. and S. Nam, 2018. Data from: EC1, mooring time-series since 1996. SEANOE. doi: 10.17882/58134.
  123. Peterson, M.L., J. Fabres, S.G. Wakeham, C. Lee, I.J. Alonso and J.C. Miquel, 2009. Sampling the vertical particle flux in the upper water column using a large diameter free-drifting NetTrap adapted to an Indented Rotating Sphere sediment trap Deep-Sea Res. Part II, 56(18): 1547-1557, 10.1016/j.dsr2.2008.12.020.
  124. Ran, L., J. Chen, M.G. Wiesner, Z. Ling, N. Lahajnar, Z. Yang, H. Li, Q. Hao and K. Wang, 2015. Variability in the abundance and species composition of diatoms in sinking particles in the northern South China Sea: Results from time-series moored sediment traps. Deep Sea Res.-II, 122: 15-24. https://doi.org/10.1016/j.dsr2.2015.07.004
  125. Ramaswamy, V. and B. Gaye, 2006. Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean. Deep Sea Res.-I, 53(2): 271-293, https://doi.org/10.1016/j.dsr.2005.11.003.
  126. Ridgewell, A. and S. Arndt, 2015. Why dissolved organics matter: DOC in ancient oceans and past climate change. In Biogeochemistry of Marine Dissolved Organic Matter (Eds.2), 1-19. Elsevier.
  127. Riley, J.S., R. Sanders, C. Marsay, F.A.C. Le Moigne, E.P. Achterberg and A.J. Poulton, 2012. The relative contribution of fast and slow sinking particles to the ocean carbon export. Global Biogeochem. Cycles, 26: GB1026.
  128. Ruff, M., S. Fahrni, H.W. Gaggeler, I. Hajdas, M. Suter, H.A. Synal, S. Szidat and L. Wacker, 2010. On-line radiocarbon measurements of small samples using elemental analyzer and MICADAS gas ion source. Radiocarbon, 52(4): 1645-56. https://doi.org/10.1017/s003382220005637x
  129. Sabine, C.L. and R.A. Feely, 2007. The oceanic sink for carbon dioxide, Greenhouse Gas Sinks, Eds, CABI, 31-49 pp.
  130. Sano, M., R. Makabe, N. Kurosawa, M. Moteki and T. Odate, 2020. Effects of Lugol's iodine on long-term preservation of marine plankton samples for molecular and stable carbon and nitrogen isotope analyses. Limnol. Oceanogr. Methods, 18(11): 635-643. https://doi.org/10.1002/lom3.10390.
  131. Schuur, E.A.G., E.R.M. Druffel and S.E. Trumbore, 2016. Radiocarbon and climate change: Mechanisms, applications and laboratory techniques. Springer. 315 pp.
  132. Siegel, D.A., K.O. Buesseler, S.C. Doney, S.F. Sailley, M.J. Behrenfeld and P.W. Boyd, 2014. Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem. Cycles, 28: 181-196. https://doi.org/10.1002/2013GB004743
  133. Sigman, D.M. and G.H. Haug, 2003. The biological pump in the past. In Treatise In Geochemistry, 6: 491-528. https://doi.org/10.1016/B0-08-043751-6/06118-1
  134. Sherrell, R.M., Field M.P. and Y. Gao, 1998. Temporal variability of suspended mass and composition in the Northeast Pacific water column: relationships to sinking flux and lateral advection. Deep-Sea Res. II, 45: 733-761. https://doi.org/10.1016/S0967-0645(97)00100-8
  135. Sherman, A.D. and K.L. Smith Jr. 2009. Deep-sea benthic boundary layer communities and food supply: A long-term monitoring strategy. Deep-Sea Res. II, 56: 1754-1762. https://doi.org/10.1016/j.dsr2.2009.05.020.
  136. Smith, K.L., Jr. and E.R.M. Druffel. 1998. Long time-series monitoring of an abyssal site in the NE Pacific: An introduction. Deep-Sea Res. II, 45: 573-586. https://doi.org/10.1016/S0967-0645(97)00094-5.
  137. Smith, K.L., Jr., A.D. Sherman, P.R. McGill, R.G. Henthorn, J. Ferreira, and C.L. Huffard, 2017. Evolution of monitoring an abyssal time- series station in the northeast Pacific over 28 years. Oceanography, 30(4): 72-81, https://doi.org/10.5670/oceanog.2017.425.
  138. Synal, H.A., M. Stocker and M. Suter, 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 259: 7-13.
  139. Taylor, S.R. and S.M. McLennan, 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Sci.
  140. Thomsen, L., J. Aguzzi, C. Costa, F. De Leo, A. Ogston and A. Purser, 2017. The oceanic biological pump: Rapid carbon transfer to depth at continental margins during winter. Sci. Rep., 7: 10763. https://doi.org/10.1038/s41598-017-11075-6
  141. Thunell, R.C.,1998. Seasonal and annual variability in particle fluxes in the Gulf of California: a response to climate forcing. Deep-Sea Res. I, 45: 2059-2083. https://doi.org/10.1016/S0967-0637(98)00053-3
  142. Timothy, D.A., C.S. Wong, J.E. Barwell-Clarke, J.S. Page, L.A. White and R.W. Macdonald, 2013. Climatology of sediment flux and composition in the subarctic Northeast Pacific Ocean with biogeochemical implications. Prog. Oceanogr, 116: 95-129. https://doi.org/10.1016/j.pocean.2013.06.017
  143. Toole, J.M., R.G. Curry, T.M. Joyce, M. McCarthy and B. Pena-Molino, 2011. Transport of the North Atlantic Deep Western Boundary Current about 398N, 708W: 2004-2008, Deep Sea Res., Part II, 58: 1768-1780. https://doi.org/10.1016/j.dsr2.2010.10.058
  144. Toggweiler, J.R., E.R.M. Druffel, R.M. Key and E.D. Galbraith, 2019. Upwelling in the Ocean Basins North of the ACC: 1. On the Upwelling Exposed by the Surface Distribution of Δ14C. J. Geophys. Res. Oceans, 124: 2591-2608. https://doi.org/10.1029/2018JC014794
  145. Turich, C., S. Schouten, R. C. Thunell, R. Varela, Y. Astor and S.G. Wakeham, 2013, Comparison of TEX86 and U37K' temperature proxies in sinking particles in the Cariaco Basin, Deep-Sea Res. I., 78: 115-133. https://doi.org/10.1016/j.dsr.2013.02.008.
  146. van der Voort, T.S., T.M. Blattmann, M. Usman, D.B. Montlucon, T. Loeffler, M.L. Tavagna, N. Gruber N and T.I. Eglinton, in review, 2020. MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon): A (radio) carbon-centric database for seafloor surficial sediments, Earth Syst. Sci. Data Discuss. https://doi.org/10.5194/essd-2020-199.
  147. Volk, T. and M.I. Hoffert, 1985. Ocean carbon pumps: Analysis of relative strength and efficiencies of in ocean-driven circulation atmospheric CO2 changes. In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. (E.T. Sundquist and W.S. Broecker, eds), Geophysical Monogr. Ser., 32, AGU, Washington, DC. pp. 99-110.
  148. Wacker, L., G. Bonani, M. Friedrich, I. Hajdas, B. Kromer, M. Nemec, M. Ruff, M. Suter, H.A. Synal and C. Vockenhuber, 2010. MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon, 52: 252-262. https://doi.org/10.1017/s0033822200045288
  149. Wacker, L., S.M. Fahrni, I. Hajdas, M. Molnar, H.A. Synal, S. Szidat and Y.L. Zhang, 2013. A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nucl. Instr. Meth. Phys. Res. B-Beam Interactions with Materials and Atoms, 294: 315-319. https://doi.org/10.1016/j.nimb.2012.02.009
  150. Walsh, J.J., D.A. Dieterle, F.E. Muller-Karger, R. Bohrer, W.P. Bissett, R.J. Varela, R. Aparicio, R. Diaz, R. Thunell, G.T. Taylor, M.I. Scranton, K.A. Fanning and E.T. Peltzer, 1999. Simulation of carbon-nitrogen cycling during Spring upwelling in the Cariaco Basin. J. Geophys. Res. Oceans, 104: 7807-7825. https://doi.org/10.1029/1998JC900120
  151. Wakeham, S.G., J.I. Hedges, C. Lee, P.J. Hernes and M.L. Peterson, 1993. Effects of poisons and preservatives on the fluxes and elemental compositions of sediment trap material. J. Mar. Res., 51: 651-668. https://doi.org/10.1357/0022240933223990
  152. Wakeham, S.G., E.A. Canuel, E.J. Lerberg, P. Mason, T.P. Sampere, T.S. Bianchi, 2009. Partitioning of organic matter in continental margin sediments among density fractions. Mar. Chem., 115(3-4): 211-225. https://doi.org/10.1016/j.marchem.2009.08.005
  153. Wakeham, S.G. and A.P. McNichol, 2014. Transfer of organic carbon through marine water columns to sediments - insights from stable and radiocarbon isotopes of lipid biomarkers. Biogeosci, 11: 6895-6914. https://doi.org/10.5194/bg-11-6895-2014
  154. Welte, C, L. Hendriks, L. Wacker, N. Haghipour, T.I. Eglinton, D. Gunther and H.A. Synal, 2018. Towards the limits: Analysis of microscale 14C samples using EA-AMS. Nucl. Inst. Meth., B 437: 66-74. doi: 10.1016/j.nimb.2018.09.046.
  155. Wong, C.S., F.A. Whitney, D.W. Crawford, K. Iseki, R.J. Matear, W.K. Johnson, J.S. Page and D. Timothy, 1999. Seasonal and interannual variability in particle fluxes of carbon, nitrogen and silicon from time series of sediment traps at Ocean Station P, 1982-1993: relationship to changes in subarctic primary productivity, Deep-Sea Res. II, 46(11-12): 2735-2760, https://doi.org/10.1016/S0967-0645(99)00082-X.
  156. Yu, M., T.I. Eglinton, N. Haghipour, D.B. Montlucon, L. Wacker, Z. Wang, G. Jin and M. Zhao, 2019. Molecular isotopic insights into hydrodynamic controls on fluvial suspended particulate organic matter transport, Geochim. Cosmochim. Acta., 262: 78-91. https://doi.org/10.1016/j.gca.2019.07.040.
  157. Zhang, J., H. Li, J. Xuan, Z. Wu, Z. Yang, M.G. Wiesner and J. Chen, 2019. Enhancement of mesopelagic sinking particle fluxes due to upwelling, aerosol deposition, and monsoonal influences in the northwestern South China Sea. J. Geophys. Res. Oceans, 124: 99-112. https://doi.org/10.1029/ 2018JC014704.