DOI QR코드

DOI QR Code

완전 탄소 프리폼으로부터 Si 용융 침투에 의해 제조한 반응 소결 탄화규소의 치밀화에 미치는 Y2O3 첨가량의 영향

Effect of Y2O3 Additive Amount on Densification of Reaction Bonded Silicon Carbides Prepared by Si Melt Infiltration into All Carbon Preform

  • Cho, Kyeong-Sik (Department of Advanced Materials Science & Engineering, Kumoh National Institute of Technology) ;
  • Jang, Min-Ho (Department of Advanced Materials Science & Engineering, Kumoh National Institute of Technology)
  • 투고 : 2021.02.15
  • 심사 : 2021.05.10
  • 발행 : 2021.05.27

초록

The conversion of all carbon preforms to dense SiC by liquid infiltration can become a low-cost and reliable method to form SiC-Si composites of complex shape and high density. Reactive sintered silicon carbide (RBSC) is prepared by covering Si powder on top of 0.5-5.0 wt% Y2O3-added carbon preforms at 1,450 and 1,500℃ for 2 hours; samples are analyzed to determine densification. Reactive sintering from the Y2O3-free carbon preform causes Si to be pushed to one side and cracking defects occur. However, when prepared from the Y2O3-added carbon preform, an SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C = SiC reaction, 3C and 6H of SiC, crystalline Si, and Y2O3 phases are detected by XRD analysis without the appearance of graphite. As the content of Y2O3 in the carbon preform increases, the prepared RBSC accelerates the SiC conversion reaction, increasing the density and decreasing the pores, resulting in densification. The dense RBSC obtained by reaction sintering at 1,500 ℃ for 2 hours from a carbon preform with 2.0 wt% Y2O3 added has 0.20 % apparent porosity and 96.9 % relative density.

키워드

과제정보

This research was supported by Kumoh National Institute of Technology (2019-104-017)

참고문헌

  1. K. Tsuno, H. Irikado, K. Hamada, O. Kazuhiko, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto and Y. Dai, in International Conference on Space Optics-ICSO 2004, ed. J. Costeraste and E. Armandillo, 105681F, Toulouse, France, March-April (2004).
  2. Y. Zhang, J. Zhang, J. Han, X. He and W. Yao, Mater. Lett., 58, 1204 (2004). https://doi.org/10.1016/j.matlet.2003.09.010
  3. K. Tsuno, H. Irikado, K. Oono, S. Suyama and Y. Itoh, in Proc. 6th Inter. Conf. on Space Optics, ESASP-621, Noordwijk, Netherlands, June (2006).
  4. L. E. Matson, M. Y. Chen and B. deBlonk, 2008 Advances Maui Optical and Space Surveillance Technologies Conference, Maui, HI, September (2008).
  5. M. Kotani, Y. Muta, A. Yoshimura, S. Ogihara, T. Imai, H. Katayama, Y. Yui, Y. Tange, K. Enya, H. Kaneda and T. Nakagawa, J. Mater. Eng. Perform., 23, 850 (2014). https://doi.org/10.1007/s11665-013-0827-1
  6. Y.-H. Baik, J. Korean Ceram. Soc., 25, 609 (1988).
  7. Y.-J. Kim, Y.-S. Park, Y.-W. Jung, J.-B. Song, S.-Y. Park and H.-J. Im, J. Korean Soc. Composite Mater., 25, 172 (2012). https://doi.org/10.7234/kscm.2012.25.6.172
  8. I.-S. Han, J.-H. Yang and D.-S. Suhr, J. Korean Ceram. Soc., 30, 69 (1993).
  9. K.-S. Seo, S.-W. Park, J.-W. Ha and Y.-J. Chung, J. Korean Ceram. Soc., 35, 626 (1998).
  10. K. S. Seo, S. W Park and H. S. Song, J. Korean Ceram. Soc., 36, 655 (1999).
  11. G.-S. Cho, G.-M. Kim and S.-W. Park, J. Korean Ceram. Soc., 46, 534 (2009). https://doi.org/10.4191/KCERS.2009.46.5.534
  12. C.-S. Kwon, Y.-S. Oh, S.-M. Lee, Y. Han, H.-I. Shina, Y. Kim and S. Kim, J. Korean Powder Metall. Inst., 21, 467 (2014). https://doi.org/10.4150/KPMI.2014.21.6.467
  13. B. L. Wing, F. Esmonde-White and J. W. Halloran, J. Am. Ceram. Soc., 99, 3705 (2016). https://doi.org/10.1111/jace.14398
  14. N.-L. Zhang, J.-F. Yang, Y.-C. Deng, B. Wang and P. Yin, Ceram. Int., 45, 15715 (2019). https://doi.org/10.1016/j.ceramint.2019.04.224
  15. S. Songa, B. Lua, Z. Gaob, C. Baoc and Y. Ma, Ceram. Int., 45, 17987 (2019). https://doi.org/10.1016/j.ceramint.2019.06.017
  16. H. Xia, J. Wang, H. Jin, Z. Shi and G. Qiao, Mater. Sci. and Eng., A, 525, 283 (2010).
  17. J. C. Margiotta, D. Zhang, D. C. Nagle and C. E. Feeser, J. Mater. Res., 23, 1237 (2008). https://doi.org/10.1557/JMR.2008.0167
  18. A. S. Mukasyan, Y.-C. Lin, A. S. Rogachev and D. O. Moskovskikh, J. Am. Ceram. Soc., 96, 111 (2013). https://doi.org/10.1111/jace.12107
  19. Y. Wang, S. Tan and D. Jiang, Ceram. Int., 30, 435 (2004). https://doi.org/10.1016/S0272-8842(03)00128-7
  20. Y. X. Wang, S. H. Tan and D. L. Jiang, Carbon, 42, 1833 (2004). https://doi.org/10.1016/j.carbon.2004.03.018
  21. A. K. Kercher and D. C. Nagle, Carbon, 41, 3 (2003). https://doi.org/10.1016/S0008-6223(02)00262-2
  22. C. Zollfrank and H. Sieber, J. Am. Ceram. Soc., 88, 51 (2005). https://doi.org/10.1111/j.1551-2916.2004.00028.x
  23. P. Sangsuwan, J. A. Orejas, J. E. Gatica, S. N. Tewari and M. Singh, Ind. Eng. Chem. Res., 40, 5191 (2001). https://doi.org/10.1021/ie001029e
  24. A. Favre, H. Fuzellier and J. Suptil, Ceram. Int., 29, 235 (2003). https://doi.org/10.1016/S0272-8842(02)00110-4
  25. K. Yaqnaba, M. Akasaka, M. Takeuchi, M. Watanabe, T. Narushima and Y. Iguchi, Mater. Trans., JIM, 38, 990 (1997). https://doi.org/10.2320/matertrans1989.38.990
  26. P. Sangsuwan, S. N. Tewari, J. E. Gatica, M. Singh and R. Dickerson, Metall. Mater. Trans. B, 30B, 933 (1999).
  27. O. Dezellus, F. Hodaj and N. Eustathopoulos, Acta Mater., 50, 4741 (2002). https://doi.org/10.1016/S1359-6454(02)00309-9
  28. H. T. Fang, J. H. Jeon, J. C. Zhu and Z. D. Yin, Carbon, 40, 2559 (2002). https://doi.org/10.1016/S0008-6223(02)00171-9
  29. Y. Song, S. Dhar, L. C. Feldman, G. Chung and J. R. Williams, J. Appl. Phys., 95, 4953 (2004). https://doi.org/10.1063/1.1690097
  30. B. Harder, N. Jacobson and D. Myers, J. Am. Ceram. Soc., 96, 606 (2013). https://doi.org/10.1111/jace.12104
  31. N. S. Jacobson, J. Am. Ceram. Soc., 76, 3 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03684.x
  32. J. Roy, S. Chandra, S. Das and S. Maitra, Rev. Adv. Mater. Sci., 38, 29 (2014).
  33. S. Ding, S. Zhu, Y. Zeng and D. Jiang, Ceram. Int., 32, 461 (2006). https://doi.org/10.1016/j.ceramint.2005.03.024
  34. A. Maity, D. Kalita, N. Kayal, T. Goswami, O. Chakrabarty and P. G. Rao, Ceram. Int., 38, 4701 (2012). https://doi.org/10.1016/j.ceramint.2012.02.054
  35. K. Biswas, G. Rixecker and F. Aldinger, Mater. Sci. Eng., A, 374, 56 (2004). https://doi.org/10.1016/j.msea.2003.11.037
  36. L. Wu, W. Sun, Y. Chen, Y. Lu, Y. Jiang and Z. Huang, J. Am. Ceram. Soc., 94, 4453 (2011). https://doi.org/10.1111/j.1551-2916.2011.04709.x
  37. A. Noviyanto and D.-H. Yoon, Current Appl. Phys., 13, 287 (2013). https://doi.org/10.1016/j.cap.2012.07.027
  38. H.-M. Oh and H.-K. Lee, Ceram. Int. 46, 12517 (2020). https://doi.org/10.1016/j.ceramint.2020.02.014
  39. X. Zhu, Y. Zhou, K. Hirao and Z. Lences, J. Am. Ceram. Soc., 89, 3331 (2006). https://doi.org/10.1111/j.1551-2916.2006.01195.x
  40. X. Zhou, D. Liu, H. Bu, L. Deng, H. Liu, P. Yuan, P. Du and H. Song, Solid Earth Sci., 3, 16 (2018). https://doi.org/10.1016/j.sesci.2017.12.002
  41. Y. Tong, S. Bai, X. Liang, Q. H. Qin and J. Zhai, Ceram. Int., 42, 17174 (2016). https://doi.org/10.1016/j.ceramint.2016.08.007
  42. R. Voytovych, V. Bougiouri, N. R. Calderon, J. Narciso and N. Eustathopoulos, Acta Mater., 56, 2237 (2008). https://doi.org/10.1016/j.actamat.2008.01.011
  43. V. Bougiouri, R. Voytovych, N. Rojo-Calderon, J. Narciso, N. Eustathopoulos, Scr. Mater., 54, 1875 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.015
  44. M. Naikadea, B. Fankhanelc, L. Weberb, A. Ortonad, M. Stelterc and T. Graulea, J. Eur. Ceram. Soc., 39, 735 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.049
  45. A. Casado, J. M. Torralba and S. Milenkovic, Metals, 9, 300 (2019). https://doi.org/10.3390/met9030300