DOI QR코드

DOI QR Code

The Golgi complex: a hub of the secretory pathway

  • Park, Kunyou (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Ju, Sungeun (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Kim, Nari (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Park, Seung-Yeol (Department of Life Sciences, Pohang University of Science and Technology)
  • Received : 2020.11.18
  • Accepted : 2021.02.09
  • Published : 2021.05.31

Abstract

The Golgi complex plays a central role in protein secretion by regulating cargo sorting and trafficking. As these processes are of functional importance to cell polarity, motility, growth, and division, there is considerable interest in achieving a comprehensive understanding of Golgi complex biology. However, the unique stack structure of this organelle has been a major hurdle to our understanding of how proteins are secreted through the Golgi apparatus. Herein, we summarize available relevant research to gain an understanding of protein secretion via the Golgi complex. This includes the molecular mechanisms of intra-Golgi trafficking and cargo export in the trans-Golgi network. Moreover, we review recent insights on signaling pathways regulated by the Golgi complex and their physiological significance.

Keywords

Acknowledgement

This study was supported by grants from the National Research Foundation (NRF-2020R1C1C1008823, NRF-2017R1A5A1015366), the Korea Health Industry Development Institute (KHIDI-HR20C0025), POSCO Science Fellowship, and the BK21 Plus and BK21 FOUR Research Fellowship.

References

  1. Sato K and Nakano A (2007) Mechanisms of COPII vesicle formation and protein sorting. FEBS Lett 581, 2076-2082 https://doi.org/10.1016/j.febslet.2007.01.091
  2. Hsu VW, Lee SY and Yang JS (2009) The evolving understanding of COPI vesicle formation. Nat Rev Mol Cell Biol 10, 360-364 https://doi.org/10.1038/nrm2663
  3. Fourriere L, Jimenez AJ, Perez F and Boncompain G (2020) The role of microtubules in secretory protein transport. J Cell Sci 133, jcs237016 https://doi.org/10.1242/jcs.237016
  4. Barlowe C, Orci L, Yeung T et al (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895-907 https://doi.org/10.1016/0092-8674(94)90138-4
  5. Zanetti G, Pahuja KB, Studer S, Shim S and Schekman R (2011) COPII and the regulation of protein sorting in mammals. Nat Cell Biol 14, 20-28 https://doi.org/10.1038/ncb2390
  6. Makhoul C, Gosavi P and Gleeson PA (2019) Golgi dynamics: the morphology of the mammalian Golgi apparatus in health and disease. Front Cell Dev Biol 7, 112 https://doi.org/10.3389/fcell.2019.00112
  7. Lee TH and Linstedt AD (1999) Osmotically induced cell volume changes alter anterograde and retrograde transport, Golgi structure, and COPI dissociation. Mol Biol Cell 10, 1445-1462 https://doi.org/10.1091/mbc.10.5.1445
  8. Kellokumpu S, Sormunen R and Kellokumpu I (2002) Abnormal glycosylation and altered Golgi structure in colorectal cancer: dependence on intra-Golgi pH. FEBS Lett 516, 217-224 https://doi.org/10.1016/S0014-5793(02)02535-8
  9. Rothman JE and Wieland FT (1996) Protein sorting by transport vesicles. Science 272, 227 https://doi.org/10.1126/science.272.5259.227
  10. Orci L, Stamnes M, Ravazzola M et al (1997) Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90, 335-349 https://doi.org/10.1016/S0092-8674(00)80341-4
  11. Becker B and Melkonian M (1996) The secretory pathway of protists: spatial and functional organization and evolution. Microbiol Rev 60, 697 https://doi.org/10.1128/mr.60.4.697-721.1996
  12. Bonfanti L, Mironov AA Jr, Martinez-Menarguez JA et al (1998) Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95, 993-1003 https://doi.org/10.1016/S0092-8674(00)81723-7
  13. Mironov AA, Beznoussenko GV, Nicoziani P et al (2001) Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J Cell Biol 155, 1225- 1238 https://doi.org/10.1083/jcb.200108073
  14. Donohoe BS, Kang B-H and Staehelin LA (2007) Identification and characterization of COPIa- and COPIb- type vesicle classes associated with plant and algal Golgi. Proc Natl Acad Sci U S A 104, 163 https://doi.org/10.1073/pnas.0609818104
  15. Losev E, Reinke CA, Jellen J, Strongin DE, Bevis BJ and Glick BS (2006) Golgi maturation visualized in living yeast. Nature 441, 1002-1006 https://doi.org/10.1038/nature04717
  16. Matsuura-Tokita K, Takeuchi M, Ichihara A, Mikuriya K and Nakano A (2006) Live imaging of yeast Golgi cisternal maturation. Nature 441, 1007-1010 https://doi.org/10.1038/nature04737
  17. Martinez-Menarguez JA, Prekeris R, Oorschot VMJ et al (2001) Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport. J Cell Biol 155, 1213-1224 https://doi.org/10.1083/jcb.200108029
  18. Lowe M and Kreis TE (1998) Regulation of membrane traffic in animal cells by COPI. Biochim Biophys Acta 1404, 53-66 https://doi.org/10.1016/S0167-4889(98)00046-9
  19. Nickel W, Brugger B and Wieland FT (2002) Vesicular transport: the core machinery of COPI recruitment and budding. J Cell Sci 115, 3235 https://doi.org/10.1242/jcs.115.16.3235
  20. Hoffman GR, Rahl PB, Collins RN and Cerione RA (2003) Conserved structural motifs in intracellular trafficking pathways: structure of the γCOP appendage domain. Mole Cell 12, 615-625 https://doi.org/10.1016/j.molcel.2003.08.002
  21. Jackson MR, Nilsson T and Peterson PA (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9, 3153-3162 https://doi.org/10.1002/j.1460-2075.1990.tb07513.x
  22. Cosson P and Letourneur F (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263, 1629 https://doi.org/10.1126/science.8128252
  23. Jackson Lauren P, Lewis M, Kent Helen M et al (2012) Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev Cell 23, 1255-1262 https://doi.org/10.1016/j.devcel.2012.10.017
  24. Ma W and Goldberg J (2013) Rules for the recognition of dilysine retrieval motifs by coatomer. EMBO J 32, 926-937 https://doi.org/10.1038/emboj.2013.41
  25. Wu WJ, Erickson JW, Lin R and Cerione RA (2000) The γ-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature 405, 800-804 https://doi.org/10.1038/35015585
  26. Schmitz KR, Liu J, Li S et al (2008) Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev Cell 14, 523-534 https://doi.org/10.1016/j.devcel.2008.02.016
  27. Tu L, Tai WCS, Chen L and Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321, 404 https://doi.org/10.1126/science.1159411
  28. Dippold HC, Ng MM, Farber-Katz SE et al (2009) GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139, 337-351 https://doi.org/10.1016/j.cell.2009.07.052
  29. Tanigawa G, Orci L, Amherdt M, Ravazzola M, Helms JB and Rothman JE (1993) Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J Cell Biol 123, 1365-1371 https://doi.org/10.1083/jcb.123.6.1365
  30. Donaldson JG, Cassel D, Kahn RA and Klausner RD (1992) ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc Natl Acad Sci U S A 89, 6408 https://doi.org/10.1073/pnas.89.14.6408
  31. Kung LF, Pagant S, Futai E et al (2012) Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. EMBO J 31, 1014-1027 https://doi.org/10.1038/emboj.2011.444
  32. Bigay J, Gounon P, Robineau S and Antonny B (2003) Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563-566 https://doi.org/10.1038/nature02108
  33. Reinhard C, Schweikert M, Wieland FT and Nickel W (2003) Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Proc Natl Acad Sci U S A 100, 8253 https://doi.org/10.1073/pnas.1432391100
  34. Lanoix J, Ouwendijk J, Stark A et al (2001) Sorting of Golgi resident proteins into different subpopulations of COPI vesicles : a role for ArfGAP1. J Cell Biol 155, 1199-1212 https://doi.org/10.1083/jcb.200108017
  35. Bigay J, Casella J-F, Drin G, Mesmin B and Antonny B (2005) ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J 24, 2244-2253 https://doi.org/10.1038/sj.emboj.7600714
  36. Park S-Y, Yang J-S, Li Z et al (2019) The late stage of COPI vesicle fission requires shorter forms of phosphatidic acid and diacylglycerol. Nat Commun 10, 3409 https://doi.org/10.1038/s41467-019-11324-4
  37. Yang J-S, Lee SY, Gao M et al (2002) ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J Cell Biol 159, 69-78 https://doi.org/10.1083/jcb.200206015
  38. Dodonova SO, Diestelkoetter-Bachert P, von Appen A et al (2015) A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science 349, 195 https://doi.org/10.1126/science.aab1121
  39. Glick BS and Nakano A (2009) Membrane traffic within the Golgi apparatus. Ann Rev Cell Dev Biol 25, 113-132 https://doi.org/10.1146/annurev.cellbio.24.110707.175421
  40. Patterson GH, Hirschberg K, Polishchuk RS, Gerlich D, Phair RD and Lippincott-Schwartz J (2008) Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133, 1055-1067 https://doi.org/10.1016/j.cell.2008.04.044
  41. Trucco A, Polishchuk RS, Martella O et al (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6, 1071-1081 https://doi.org/10.1038/ncb1180
  42. Pietro ES, Capestrano M, Polishchuk EV et al (2009) Group IV phospholipase A2α controls the formation of inter-cisternal continuities involved in intra-Golgi transport. PLOS Biology 7, e1000194 https://doi.org/10.1371/journal.pbio.1000194
  43. Yang J-S, Valente C, Polishchuk RS et al (2011) COPI acts in both vesicular and tubular transport. Nat Cell Biol 13, 996-1003 https://doi.org/10.1038/ncb2273
  44. Park S-Y, Yang J-S, Schmider AB, Soberman RJ and Hsu VW (2015) Coordinated regulation of bidirectional COPI transport at the Golgi by CDC42. Nature 521, 529 https://doi.org/10.1038/nature14457
  45. Farhan H and Hsu VW (2016) Cdc42 and cellular polarity: emerging roles at the Golgi. Trends Cell Biol 26, 241-248 https://doi.org/10.1016/j.tcb.2015.11.003
  46. Baschieri F, Confalonieri S, Bertalot G et al (2014) Spatial control of Cdc42 signalling by a GM130-RasGRF complex regulates polarity and tumorigenesis. Nat Commun 5, 4839 https://doi.org/10.1038/ncomms5839
  47. Bustelo XR (2001) Vav proteins, adaptors and cell signaling. Oncogene 20, 6372-6381 https://doi.org/10.1038/sj.onc.1204780
  48. Pulvirenti T, Giannotta M, Capestrano M et al (2008) A traffic-activated Golgi-based signalling circuit coordinates the secretory pathway. Nat Cell Biol 10, 912-922 https://doi.org/10.1038/ncb1751
  49. Guo Y, Sirkis DW and Schekman R (2014) Protein sorting at the trans-Golgi network. Ann Rev Cell Dev Biol 30, 169-206 https://doi.org/10.1146/annurev-cellbio-100913-013012
  50. Polishchuk EV, Di Pentima A, Luini A and Polishchuk RS (2003) Mechanism of constitutive export from the Golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-Golgi network tubular domains. Mol Biol Cell 14, 4470-4485 https://doi.org/10.1091/mbc.e03-01-0033
  51. Tanos B and Rodriguez-Boulan E (2008) The epithelial polarity program: machineries involved and their hijacking by cancer. Oncogene 27, 6939-6957 https://doi.org/10.1038/onc.2008.345
  52. Dittmer F, Ulbrich EJ, Hafner A et al (1999) Alternative mechanisms for trafficking of lysosomal enzymes in mannose 6-phosphate receptor-deficient mice are cell type-specific. J Cell Sci 112, 1591 https://doi.org/10.1242/jcs.112.10.1591
  53. Simmen T, Honing S, Icking A, Tikkanen R and Hunziker W (2002) AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nat Cell Biol 4, 154-159 https://doi.org/10.1038/ncb745
  54. Brewer CF, Miceli MC and Baum LG (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Str Biol 12, 616-623 https://doi.org/10.1016/S0959-440X(02)00364-0
  55. Weisz OA and Rodriguez-Boulan E (2009) Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 122, 4253 https://doi.org/10.1242/jcs.032615
  56. Scheiffele P, Peranen J and Simons K (1995) N-glycans as apical sorting signals in epithelial cells. Nature 378, 96-98 https://doi.org/10.1038/378096a0
  57. Kornfeld S and Mellman I (1989) The Biogenesis of lysosomes. Ann Rev Cell Biol 5, 483-525 https://doi.org/10.1146/annurev.cb.05.110189.002411
  58. Lefrancois S, Zeng J, Hassan AJ, Canuel M and Morales CR (2003) The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J 22, 6430-6437 https://doi.org/10.1093/emboj/cdg629
  59. Ni X and Morales CR (2006) The lysosomal trafficking of acid sphingomyelinase is mediated by sortilin and mannose 6-phosphate receptor. Traffic 7, 889-902 https://doi.org/10.1111/j.1600-0854.2006.00429.x
  60. Reczek D, Schwake M, Schroder J et al (2007) LIMP-2 is a receptor for lysosomal mannose-6-phosphate-Independent targeting of β-glucocerebrosidase. Cell 131, 770-783 https://doi.org/10.1016/j.cell.2007.10.018
  61. von Blume J, Alleaume A-M, Cantero-Recasens G et al (2011) ADF/Cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1. Dev Cell 20, 652-662 https://doi.org/10.1016/j.devcel.2011.03.014
  62. von Blume J, Alleaume A-M, Kienzle C, Carreras-Sureda A, Valverde M and Malhotra V (2012) Cab45 is required for Ca2+-dependent secretory cargo sorting at the trans-Golgi network. J Cell Biol 199, 1057-1066 https://doi.org/10.1083/jcb.201207180
  63. Bivona TG, Quatela S and Philips MR (2006) Analysis of Ras activation in living cells with GFP-RBD. Methods Enzymol 407, 128-143 https://doi.org/10.1016/S0076-6879(05)07012-6
  64. Ibiza S, Perez-Rodriguez A, Ortega A et al (2008) Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells. Proc Natl Acad Sci U S A 105, 10507-10512 https://doi.org/10.1073/pnas.0711062105
  65. Yasuda T and Kurosaki T (2008) Regulation of lymphocyte fate by Ras/ERK signals. Cell Cycle 7, 3634-3640 https://doi.org/10.4161/cc.7.23.7103
  66. Ahearn IM, Haigis K, Bar-Sagi D and Philips MR (2011) Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 13, 39-51 https://doi.org/10.1038/nrm3255
  67. Goodwin JS, Drake KR, Rogers C et al (2005) Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J Cell Biol 170, 261-272 https://doi.org/10.1083/jcb.200502063
  68. Rocks O, Peyker A, Kahms M et al (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746-1752 https://doi.org/10.1126/science.1105654
  69. Daaka Y, Luttrell LM and Lefkowitz RJ (1997) Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88-91 https://doi.org/10.1038/36362
  70. Clark RB, Knoll BJ and Barber R (1999) Partial agonists and G protein-coupled receptor desensitization. Trends Pharm Sci 20, 279-286 https://doi.org/10.1016/S0165-6147(99)01351-6
  71. Muniz M, Martin ME, Hidalgo J and Velasco A (1997) Protein kinase A activity is required for the budding of constitutive transport vesicles from the trans-Golgi network. Proc Natl Acad Sci U S A 94, 14461-14466 https://doi.org/10.1073/pnas.94.26.14461
  72. Cancino J, Capalbo A, Di Campli A et al (2014) Control systems of membrane transport at the interface between the endoplasmic reticulum and the Golgi. Dev Cell 30, 280-294 https://doi.org/10.1016/j.devcel.2014.06.018
  73. Giannotta M, Ruggiero C, Grossi M et al (2012) The KDEL receptor couples to Gαq&11 to activate Src kinases and regulate transport through the Golgi. EMBO J 31, 2869 https://doi.org/10.1038/emboj.2012.134
  74. Semenza JC, Hardwick KG, Dean N and Pelham HRB (1990) ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61, 1349-1357 https://doi.org/10.1016/0092-8674(90)90698-E
  75. Lewis MJ and Pelham HRB (1992) Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell 68, 353-364 https://doi.org/10.1016/0092-8674(92)90476-S
  76. Paek J, Kalocsay M, Staus DP et al (2017) Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169, 338-349.e311 https://doi.org/10.1016/j.cell.2017.03.028
  77. Lobingier BT, Huttenhain R, Eichel K et al (2017) An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169, 350-360.e312 https://doi.org/10.1016/j.cell.2017.03.022
  78. Bernales S, Papa FR and Walter P (2006) Intracellular signaling by the unfolded protein response. Ann Rev Cell Dev Biol 22, 487-508 https://doi.org/10.1146/annurev.cellbio.21.122303.120200
  79. Sun Z and Brodsky JL (2019) Protein quality control in the secretory pathway. J Cell Biol 218, 3171-3187 https://doi.org/10.1083/jcb.201906047
  80. Sasaki K and Yoshida H (2019) Golgi stress response and organelle zones. FEBS Lett 593, 2330-2340 https://doi.org/10.1002/1873-3468.13554