DOI QR코드

DOI QR Code

Incorporation of Graphitic Porous Carbon for Synthesis of Composite Carbon Aerogel with Enhanced Electrochemical Performance

  • Singh, Ashish (Nano-functional Materials Lab., Laser & Functional Materials Division, Raja Ramanna Center for Advanced Technology) ;
  • Kohli, D.K. (Nano-functional Materials Lab., Laser & Functional Materials Division, Raja Ramanna Center for Advanced Technology) ;
  • Singh, Rashmi (Nano-functional Materials Lab., Laser & Functional Materials Division, Raja Ramanna Center for Advanced Technology) ;
  • Bhartiya, Sushmita (Nano-functional Materials Lab., Laser & Functional Materials Division, Raja Ramanna Center for Advanced Technology) ;
  • Singh, M.K. (Nano-functional Materials Lab., Laser & Functional Materials Division, Raja Ramanna Center for Advanced Technology) ;
  • Karnal, A.K. (Nano-functional Materials Lab., Laser & Functional Materials Division, Raja Ramanna Center for Advanced Technology)
  • 투고 : 2020.06.05
  • 심사 : 2020.10.28
  • 발행 : 2021.05.28

초록

We report, synthesis of high surface area composite carbon aerogel using additive based polymerization technique by incorporating graphitic porous carbon as additive. This additive was separately prepared using sol-gel polymerization of resorcinol-furfuraldehyde in iso-propyl alcohol medium at much above the routine gelation temperature to yield porous carbon (CA-IPA) having graphitic layered morphology. CA-IPA exhibited a unique combination of meso-pore dominated surface area (~ 700 m2/g) and good conductivity of ~ 300 S/m. The composite carbon aerogel (CCA) was synthesized by traditional aqueous medium based resorcinol-formaldehyde gelation with CA-IPA as additive. The presence of CA-IPA favored enhanced meso-porosity as well as contributed to improvement in bulk conductivity. Based on the surface area characteristics, CCA-8 composition having 8% additive was found to be optimum. It showed specific surface area of ~ 2056 m2/g, mesopore area of 827 m2/g and electrical conductivity of 180 S/m. The electrode formed with CCA-8 showed improved electrochemical behavior, with specific capacitance of 148 F/g & ESR < 1 Ω, making it a better choice as super capacitor for energy storage applications.

키워드

과제정보

We would like to acknowledge support from Dr. Gurivinderjit Singh, Dr. Alka Ingale, Mr. Prem Kumar and Mr. Chandra Shekhar for carrying out XRD & Raman spectroscopy characterizations of the samples.

참고문헌

  1. S. M. Chen, R. Ramachandran, V. Mani, R. Saraswathi, Int. J. Electrochem. Sci., 2014, 9(8), 4072-4085.
  2. E. Taer, M. Deraman, I. A. Talib, A. Awitdrus, S.A. Hashmi, A. A. Umar, Int. J. Electrochem. Sci., 2011, 6, 3301-3315.
  3. B. J. Lee, S.R. Sivakkumar, J. M. Ko, J. H. Kim, S. M. Jo, D. Y. Kim, J. Power Sources., 2007, 168, 546-552. https://doi.org/10.1016/j.jpowsour.2007.02.076
  4. J. Chen, N. Xi, T. Zhou, S. Tan, F. Jiang, D. Yuan, Int. J. Electrochem. Sci., 2009, 4(8), 1063.
  5. A. Halama, B. Szubzda, G. Pasciak, Electrochim. Acta., 2010, 55(25), 7501-7505. https://doi.org/10.1016/j.electacta.2010.03.040
  6. Y. Huang, J. Liang, Y. Chen, Small., 2012, 8(12), 1805-1834. https://doi.org/10.1002/smll.201102635
  7. E. Frackowiakand F. Beguin, Carbon., 2002, 40(10), 1775-1787. https://doi.org/10.1016/S0008-6223(02)00045-3
  8. Y. Tao, M. Endo, K. Kaneko, Recent Pat. Eng., 2008, 1(3), 192-200. https://doi.org/10.2174/2211334710801030192
  9. A.G. Pandolfo, A. F. Hollenkamp, J. Power Sources., 2006, 157(1), 11-27. https://doi.org/10.1016/j.jpowsour.2006.02.065
  10. K. K. Park, J. B. Lee, P. Y. Park, S. W. Yoon, J. S. Moon, H. M. Eum, C. W. Lee, Desalination., 2007, 206(1-3), 86-91. https://doi.org/10.1016/j.desal.2006.04.051
  11. Y. Hanzawa, H. Hatori, N. Yoshizawa, Y. Yamada, Carbon., 2002, 40(4), 575-581. https://doi.org/10.1016/S0008-6223(01)00150-6
  12. C. Lu, Y. H. Huang, J. S. Hong, Y. J. Wu, J. Li, J. P. Cheng, J. Colloid Interface Sci., 2018, 524, 209-218. https://doi.org/10.1016/j.jcis.2018.04.006
  13. M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher, T. F. Baumann, J. Am. Chem. Soc., 2010, 132(40), 14067-14069. https://doi.org/10.1021/ja1072299
  14. A. Singh, D.K. Kohli, S. Bhartiya, R. Singh, G. Rajak, M.K. Singh, A K. Karnal, AIP Conf Proc., 2018, 1942(1), 140056.
  15. M. A. Worsley, P. J. Pauzauskie, S. O. Kucheyev, J. M. Zaug, A. V. Hamza, J. H. Satcher, T. F. Baumann, Acta Mater., 2009, 57(17), 5131-5136. https://doi.org/10.1016/j.actamat.2009.07.012
  16. M. A. Worsley, S. O. Kucheyev, J. H. Satcher, A. V. Hamza, T. F. Baumann, Appl. Phys. Lett., 2009, 94(073115), 55.
  17. F. Li, L. Xie, G. Sun, Q. Kong, F. Su, H. Lei, X. Guo, B. Zhang, C. Chen, Microporous Mesoporous Mater., 2017, 240, 145-148. https://doi.org/10.1016/j.micromeso.2016.10.052
  18. C. Macias, M. Haro, J. B. Parra , G. Rasinesand C. O. Ania, Carbon., 2013, 63, 487-497. https://doi.org/10.1016/j.carbon.2013.07.024
  19. D. Pantea, H. Darmstadt, S. Kaliaguineand C. Roy, Appl. Surf. Sci., 2003, 217(1-4), 181-193. https://doi.org/10.1016/S0169-4332(03)00550-6
  20. R. Singh, M.K. Singh, S. Bhartiya, A. Singh, D.K. Kohli, P. C. Ghosh, S. Meenakshi, P.K. Gupta, Int. J. Hydrogen Energy., 2017, 42(16), 11110-11117. https://doi.org/10.1016/j.ijhydene.2017.02.207
  21. D. K. Kohli, R. Singh, A. Singh, S. Bhartiya, M. K. Singh, P. K. Gupta, Desalin. Water Treat., 2015, 54(10), 2825-2831. https://doi.org/10.1080/19443994.2014.903208
  22. A. Singh, D. K. Kohli, S. Bhartiya, R. Singh, M. K. Singh, P. K. Gupta, Curr. Appl Phys., 2017, 17(6), 885-889. https://doi.org/10.1016/j.cap.2017.03.003
  23. Sushmita Bhartiya, D. K. Kohli, Rashmi Singh, Ashish Singh, M. K. Singh, and A. K. Karnal, AIP Conf. Proc., 2020, 2265(1), 030107.
  24. A. Celzard, J.F. Mareche, F. Payot, G. Furdin, Carbon., 2002, 40(15), 2801-2815. https://doi.org/10.1016/S0008-6223(02)00196-3
  25. B. H. Park, Y. J. Kim, J. S. Park, J. Choi, J. Ind. Eng. Chem., 2011, 17(4), 717-722. https://doi.org/10.1016/j.jiec.2011.05.015
  26. Z. Wang, B. Dou, L. Zheng, G. Zhang, Z. Liu, Z. Hao, Desalination., 2012, 299, 96-102. https://doi.org/10.1016/j.desal.2012.05.028
  27. H. F. Arani, A. R. Mirhabibi, S. Collins, R. Daroughegi, A. K. Soltani, R. Naghizadeh, N. Riahi-Noori, R. Aghababazadeh, A. Westwood, RSC Adv., 2017, 7(9), 5533-5540. https://doi.org/10.1039/C6RA25441A
  28. A. C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 2000, 61(20), 14095. https://doi.org/10.1103/physrevb.61.14095
  29. M. Canal-Rodriguez, J. A. Menendez, M. A. Montes-Moran, I. Martin-Gullon, I. M. Gullon, J. B. Parra, A. Arenillas, Electrochim. Acta., 2019, 295, 693-702. https://doi.org/10.1016/j.electacta.2018.10.189
  30. T. Bordjiba, M. Mohamedi, L. H. Dao, J. Power Sources., 2007, 172(2), 991-998. https://doi.org/10.1016/j.jpowsour.2007.05.011
  31. C. Macias, G. Rasines, T. E. Garcia , M. C. Zafra, P. Lavela, J. L. Tirado, C. O. Ania, Gels., 2016, 2(1), 4. https://doi.org/10.3390/gels2010004
  32. L. Ling, M. Qing-Han, J. Mater. Sci., 2005, 40(15), 4105-4107. https://doi.org/10.1007/s10853-005-0644-5
  33. K. Xia, Q. Li, L. Zheng, K. You, X. Tian, B. Han, Q. Gao, Z. Huang, G. Chen, C. Zhou, Microporous Mesoporous Mater., 2017, 237, 228-236. https://doi.org/10.1016/j.micromeso.2016.09.015