DOI QR코드

DOI QR Code

Bacterial Community Structure and the Dominant Species in Imported Pollens for Artificial Pollination

  • Kim, Su-Hyeon (Division of Applied Life Science, Gyeongsang National University) ;
  • Do, Heeil (Division of Applied Life Science, Gyeongsang National University) ;
  • Cho, Gyeongjun (Division of Applied Life Science, Gyeongsang National University) ;
  • Kim, Da-Ran (Research Institute of Life Science, Gyeongsang National University) ;
  • Kwak, Youn-Sig (Division of Applied Life Science, Gyeongsang National University)
  • Received : 2021.02.17
  • Accepted : 2021.03.11
  • Published : 2021.06.01

Abstract

Pollination is an essential process for plants to carry on their generation. Pollination is carried out in various ways depending on the type of plant species. Among them, pollination by insect pollinator accounts for the most common. However, these pollinators have be decreasing in population density due to environmental factors. Therefore, use of artificial pollination is increasing. However, there is a lack of information on microorganisms present in the artificial pollens. We showed the composition of bacteria structure present in the artificial pollens of apple, kiwifruit, peach and pear, and contamination of high-risk pathogens was investigated. Acidovorax spp., Pantoea spp., Erwinia spp., Pseudomonas spp., and Xanthomonas spp., which are classified as potential high-risk pathogens, have been identified in imported pollens. This study presented the pollen-associated bacterial community structure, and the results are expected to be foundation for strengthening biosecurity in orchard industry.

Keywords

Acknowledgement

This research was supported by the "Cooperative Research Program for Agriculture Science & Technology Development (PJ014934) from Rural Development Administration of Korea and Animal and Plant Quarantine Agency.

References

  1. Cellini, A., Giacomuzzi, V., Donati, I., Farneti, B., RodriguezEstrada, M. T., Savioli, S., Angeli, S. and Spinelli, F. 2019. Pathogen-induced changes in floral scent may increase honeybee-mediated dispersal of Erwinia amylovora. ISME J. 13:847-859. https://doi.org/10.1038/s41396-018-0319-2
  2. Cernava, T., Erlacher, A., Soh, J., Sensen, C. W., Grube, M. and Berg, G. 2019. Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca sativa Mill.). Microbiome 7:13. https://doi.org/10.1186/s40168-019-0624-7
  3. Donati, I., Cellini, A., Buriani, G., Mauri, S., Kay, G., Tacconi, G. and Spinelli, F. 2018. Pathways of flower infection and pollen-mediated dispersion of Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker. Hortic. Res. 5:56. https://doi.org/10.1038/s41438-018-0058-6
  4. Frank, A. C., Guzman, J. P. S. and Shay, J. E. 2017. Transmission of bacterial endophytes. Microorganisms 5:70. https://doi.org/10.3390/microorganisms5040070
  5. Gallai, N., Salles, J.-M., Settele, J. and Vaissiere, B. E. 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68:810-821. https://doi.org/10.1016/j.ecolecon.2008.06.014
  6. Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttila, A. M., Compant, S., Campisano, A., Doring, M. and Sessitsh, A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79:293-320. https://doi.org/10.1128/MMBR.00050-14
  7. Hirsch, P. R. and Mauchline, T. H. 2012. Who's who in the plant root microbiome? Nat. Biotechnol. 30:961-962. https://doi.org/10.1038/nbt.2387
  8. Lautenbach, S., Seppelt, R., Liebscher, J. and Dormann, C. F. 2012. Spatial and temporal trends of global pollination benefit. PLoS ONE 7:e35954. https://doi.org/10.1371/journal.pone.0035954
  9. Liao, F., Zhang, Y., Zhu, L.-H., Cao, B., Lv, D., Luo, J.-F. and Li, G.-R. 2018. Triplex real-time PCR detection of three quarantine Phytophthora pathogens infecting Malus Miller. J. Plant Dis. Prot. 125:325-330. https://doi.org/10.1007/s41348-017-0144-2
  10. Marques, J. P. R., Amorim, L., Sposito, M. B., Marin, D. and Appezzato-da-Gloria, B. 2013. Infection of citrus pollen grains by Colletotrichum acutatum. Eur. J. Plant Pathol. 136:35-40. https://doi.org/10.1007/s10658-012-0078-2
  11. McFrederick, Q. S. and Rehan, S. M. 2016. Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol. Ecol. 25:2302-2311. https://doi.org/10.1111/mec.13608
  12. Nam, K.-W., Moon, B.-W. and Yoon, D.-H. 2019. Morphological characteristics and germination and fertilization abilities of five pollen varieties for 'Niitaka' pear (Pyrus pyrifolia Nakai) artificial pollination. Hortic. Sci. Technol. 37:687-695.
  13. Obersteiner, A., Gilles, S., Frank, U., Beck, I., Haring, F., Ernst, D., Rothballer, M., Hartmann, A., Traidl-Hoffmann, C. and Schmid, M. 2016. Pollen-associated microbiome correlates with pollution parameters and the allergenicity of pollen. PLoS ONE 11:e0149545. https://doi.org/10.1371/journal.pone.0149545
  14. Orozco-Mosqueda, M. D. C., Rocha-Granados, M. D. C., Glick, B. R. and Santoyo, G. 2018. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res. 208:25-31. https://doi.org/10.1016/j.micres.2018.01.005
  15. Quinet, M. and Jacquemart, A.-L. 2020. Troubles in pear pollination: effects of collection and storage method on pollen viability and fruit production. Acta Oecol. 105:103558. https://doi.org/10.1016/j.actao.2020.103558
  16. Saez, A., Negri, P., Viel, M. and Aizen, M. A. 2019. Pollination efficiency of artificial and bee pollination practices in kiwifruit. Sci. Hortic. 246:1017-1021. https://doi.org/10.1016/j.scienta.2018.11.072
  17. Samnegard, U., Hamback, P. A. and Smith, H. G. 2019. Pollination treatment affects fruit set and modifies marketable and storable fruit quality of commercial apples. R. Soc. Open Sci. 6:190326. https://doi.org/10.1098/rsos.190326
  18. Vannette, R. L. 2020. The floral microbiome: plant, pollinator, and microbial perspectives. Annu. Rev. Ecol. Evol. Syst. 51:363-386. https://doi.org/10.1146/annurev-ecolsys-011720-013401
  19. von Wintzingerode, F., Landt, O., Ehrlich, A. and Gobel, U. B. 2000. Peptide nucleic acid-mediated PCR clamping as a useful supplement in the determination of microbial diversity. Appl. Environ. Microbiol. 66:549-557. https://doi.org/10.1128/AEM.66.2.549-557.2000
  20. Wei, Z., Hu, J., Gu, Y., Yin, S., Xu, Y., Jousset, A., Shen, Q. and Friman, V.-P. 2018. Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion. Soil Biol. Biochem. 118:8-17. https://doi.org/10.1016/j.soilbio.2017.11.012
  21. Zhao, D.-F. and Kuwana, T. 2003. Purification of avian circulating primordial germ cells by Nycodenz density gradient centrifugation. Br. Poult. Sci. 44:30-35. https://doi.org/10.1080/0007166031000085382