DOI QR코드

DOI QR Code

Microsecond molecular dynamics simulations revealed the inhibitory potency of amiloride analogs against SARS-CoV-2 E viroporin

  • Received : 2021.07.29
  • Accepted : 2021.11.05
  • Published : 2021.12.31

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics simulation for 1 ㎲ (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.

Keywords

Acknowledgement

The authors are grateful to Reactome Icon Library and GalaxyHomomer. These websites helped to generate the figures during the study.

References

  1. Keni R, Alexander A, Nayak PG, Mudgal J, Nandakumar K. COVID-19: emergence, spread, possible treatments, and global burden. Front Public Health 2020;8:216. https://doi.org/10.3389/fpubh.2020.00216
  2. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 2005;102:14040-14045. https://doi.org/10.1073/pnas.0506735102
  3. Debbink K, Agnihothram S, Gralinski LE, Plante JA, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med 2015;21:1508-1513. https://doi.org/10.1038/nm.3985
  4. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367:1814-1820. https://doi.org/10.1056/NEJMoa1211721
  5. Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 2020;21:224. https://doi.org/10.1186/s12931-020-01479-w
  6. Castano-Rodriguez C, Honrubia JM, Gutierrez-Alvarez J, DeDiego ML, Nieto-Torres JL, Jimenez-Guardeno JM, et al. Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. mBio 2018;9:e02325-17.
  7. Ewart GD, Sutherland T, Gage PW, Cox GB. The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J Virol 1996;70:7108-7115. https://doi.org/10.1128/jvi.70.10.7108-7115.1996
  8. Pinto LH, Holsinger LJ, Lamb RA. Influenza virus M2 protein has ion channel activity. Cell 1992;69:517-528. https://doi.org/10.1016/0092-8674(92)90452-i
  9. Pavlovic D, Neville DC, Argaud O, Blumberg B, Dwek RA, Fischer WB, et al. The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci U S A 2003;100:6104-6108. https://doi.org/10.1073/pnas.1031527100
  10. Hyser JM, Collinson-Pautz MR, Utama B, Estes MK. Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. mBio 2010;1:e00265-10.
  11. Hover S, Foster B, Barr JN, Mankouri J. Viral dependence on cellular ion channels: an emerging anti-viral target? J Gen Virol 2017;98:345-351. https://doi.org/10.1099/jgv.0.000712
  12. Verdia-Baguena C, Nieto-Torres JL, Alcaraz A, DeDiego ML, Torres J, Aguilella VM, et al. Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology 2012;432:485-494. https://doi.org/10.1016/j.virol.2012.07.005
  13. Nieto-Torres JL, Verdia-Baguena C, Jimenez-Guardeno JM, Regla-Nava JA, Castano-Rodriguez C, Fernandez-Delgado R, et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 2015;485:330-339. https://doi.org/10.1016/j.virol.2015.08.010
  14. Shah A. Novel coronavirus-induced NLRP3 inflammasome activation: a potential drug target in the treatment of COVID-19. Front Immunol 2020;11:1021. https://doi.org/10.3389/fimmu.2020.01021
  15. DeDiego ML, Nieto-Torres JL, Regla-Nava JA, Jimenez-Guardeno JM, Fernandez-Delgado R, Fett C, et al. Inhibition of NF-kappaB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol 2014;88:913-924. https://doi.org/10.1128/JVI.02576-13
  16. Scott C, Kankanala J, Foster TL, Goldhill DH, Bao P, Simmons K, et al. Site-directed M2 proton channel inhibitors enable synergistic combination therapy for rimantadine-resistant pandemic influenza. PLoS Pathog 2020;16:e1008716. https://doi.org/10.1371/journal.ppat.1008716
  17. Tong TR. Therapies for coronaviruses. Part 2: Inhibitors of intracellular life cycle. Expert Opin Ther Pat 2009;19:415-431. https://doi.org/10.1517/13543770802600698
  18. Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today 2020;25:668-688. https://doi.org/10.1016/j.drudis.2020.01.015
  19. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5:536-544. https://doi.org/10.1038/s41564-020-0695-z
  20. Li S, Yuan L, Dai G, Chen RA, Liu DX, Fung TS. Regulation of the ER stress response by the Ion channel activity of the infectious bronchitis coronavirus envelope protein modulates virion release, apoptosis, viral fitness, and pathogenesis. Front Microbiol 2019;10:3022. https://doi.org/10.3389/fmicb.2019.03022
  21. Wilson L, Gage P, Ewart G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology 2006;353:294-306. https://doi.org/10.1016/j.virol.2006.05.028
  22. Pervushin K, Tan E, Parthasarathy K, Lin X, Jiang FL, Yu D, et al. Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathog 2009;5:e1000511. https://doi.org/10.1371/journal.ppat.1000511
  23. Silva LR, da Silva Santos-Junior PF, de Andrade Brandao J, Anderson L, Bassi EJ, Xavier de Araujo-Junior J, et al. Druggable targets from coronaviruses for designing new antiviral drugs. Bioorg Med Chem 2020;28:115745. https://doi.org/10.1016/j.bmc.2020.115745
  24. Bhattacharjee A, Hossain MU, Chowdhury ZM, Rahman SM, Bhuyan ZA, Salimullah M, et al. Insight of druggable cannabinoids against estrogen receptor beta in breast cancer. J Biomol Struct Dyn 2021;39:1688-1697. https://doi.org/10.1080/07391102.2020.1737233
  25. Hossain MU, Bhattacharjee A, Emon MT, Chowdhury ZM, Mosaib MG, Mourin M, et al. Recognition of plausible therapeutic agents to combat COVID-19: an omics data based combined approach. Gene 2021;771:145368. https://doi.org/10.1016/j.gene.2020.145368
  26. Lant AF, Smith AJ, Wilson GM. Clinical evaluation of amiloride, a potassium-sparing diuretic. Clin Pharmacol Ther 1969;10:50-63. https://doi.org/10.1002/cpt196910150
  27. Buckley BJ, Aboelela A, Minaei E, Jiang LX, Xu Z, Ali U, et al. 6-Substituted hexamethylene amiloride (HMA) derivatives as potent and selective inhibitors of the human urokinase plasminogen activator for use in cancer. J Med Chem 2018;61:8299-8320. https://doi.org/10.1021/acs.jmedchem.8b00838
  28. Matthews H, Ranson M, Tyndall JD, Kelso MJ. Synthesis and preliminary evaluation of amiloride analogs as inhibitors of the urokinase-type plasminogen activator (uPA). Bioorg Med Chem Lett 2011;21:6760-6766. https://doi.org/10.1016/j.bmcl.2011.09.044
  29. Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol 2015;96:2000-2027. https://doi.org/10.1099/vir.0.000201
  30. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook (Walker JM, ed.). Totowa: Humana Press, 2005. pp. 571-607.
  31. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019;47:D427-D432. https://doi.org/10.1093/nar/gky995
  32. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567-580. https://doi.org/10.1006/jmbi.2000.4315
  33. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 2004;32:W526-W531. https://doi.org/10.1093/nar/gkh468
  34. Bhattacharya D, Nowotny J, Cao R, Cheng J. 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res 2016;44:W406-W409. https://doi.org/10.1093/nar/gkw336
  35. Ko J, Park H, Heo L, Seok C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 2012;40:W294-W297. https://doi.org/10.1093/nar/gks493
  36. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018;46:W296-W303. https://doi.org/10.1093/nar/gky427
  37. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:42717. https://doi.org/10.1038/srep42717
  38. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic Acids Res 2016;44:D1202-D1213. https://doi.org/10.1093/nar/gkv951
  39. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455-461. https://doi.org/10.1002/jcc.21334
  40. DeLano WL. Pymol: an open-source molecular graphics tool. Collaborative Computational Project No. 4, 2002. Accessed 2021 Oct 10. Available from: http://www.ccp4.ac.uk/newsletters/newsletter40/11_pymol.pdf.
  41. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605-1612. https://doi.org/10.1002/jcc.20084
  42. Casares D, Escriba PV, Rossello CA. Membrane Lipid Composition: effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. Int J Mol Sci 2019;20.
  43. Nieva JL, Madan V, Carrasco L. Viroporins: structure and biological functions. Nat Rev Microbiol 2012;10:563-574. https://doi.org/10.1038/nrmicro2820
  44. Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 2008;29:1859-1865. https://doi.org/10.1002/jcc.20945
  45. Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 2008;4:435-447. https://doi.org/10.1021/ct700301q
  46. Kutzner C, Pall S, Fechner M, Esztermann A, de Groot BL, Grubmuller H. More bang for your buck: Improved use of GPU nodes for GROMACS 2018. J Comput Chem 2019;40:2418-2431. https://doi.org/10.1002/jcc.26011
  47. V'Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 2021;19:155-170. https://doi.org/10.1038/s41579-020-00468-6
  48. Rehman M, Tauseef I, Aalia B, Shah SH, Junaid M, Haleem KS. Therapeutic and vaccine strategies against SARS-CoV-2: past, present and future. Future Virol 2020;15:471-482. https://doi.org/10.2217/fvl-2020-0137
  49. Wilson L, McKinlay C, Gage P, Ewart G. SARS coronavirus E protein forms cation-selective ion channels. Virology 2004;330:322-331. https://doi.org/10.1016/j.virol.2004.09.033
  50. Parthasarathy K, Ng L, Lin X, Liu DX, Pervushin K, Gong X, et al. Structural flexibility of the pentameric SARS coronavirus envelope protein ion channel. Biophys J 2008;95:L39-L41. https://doi.org/10.1529/biophysj.108.133041
  51. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J 2019;16:69. https://doi.org/10.1186/s12985-019-1182-0
  52. Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep 2020;19:100682. https://doi.org/10.1016/j.genrep.2020.100682
  53. Mourin M, Bhattacharjee A, Wai A, Hausner G, O'Neil J, Dibrov P. Pharmacophore-based screening and modification of amiloride analogs for targeting the NhaP-type cation-proton antiporter in Vibrio cholerae. Can J Microbiol 2021;67:835-849. https://doi.org/10.1139/cjm-2021-0074
  54. Chu H, Chan JF, Wang Y, Yuen TT, Chai Y, Hou Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis 2020; 71:1400-1409. https://doi.org/10.1093/cid/ciaa410
  55. Salsbury FR Jr. Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr Opin Pharmacol 2010;10:738-744. https://doi.org/10.1016/j.coph.2010.09.016
  56. Sun Q, Sever P. Amiloride: a review. J Renin Angiotensin Aldosterone Syst 2020;21:1470320320975893.
  57. Okajima M, Takahashi Y, Kaji T, Ogawa N, Mouri H. Nafamostat mesylate-induced hyperkalemia in critically ill patients with COVID-19: four case reports. World J Clin Cases 2020;8:5320-5325. https://doi.org/10.12998/wjcc.v8.i21.5320