Abstract
YouTube is an OTT service that leads the home economy, which has emerged from the 2020 Corona Pandemic. With the growth of OTT-based individual media, creators are required to establish attractive storytelling strategies that can be preferred by viewers and elected for YouTube recommendation algorithms. In this study, we conducted a study on modeling that proposes a content storyline for creators. As the ability for Creators to create content that viewers prefer, we have presented the data literacy ability to find patterns in complex and massive data. We also studied the importance of compelling storytelling configurations that viewers prefer and can be selected for YouTube recommendation algorithms. This study is of great significance in that it deviated from the viewer-oriented recommendation system method and proposed a story suggestion model for individual creaters. As a result of incorporating this story proposal model into the production of the YouTube channel Tiger Love video, it showed a certain effectiveness. This story suggestion model is a machine learning text-based story suggestion system, excluding the application of photography or video.