DOI QR코드

DOI QR Code

Development of a Lateral Flow Strip-Based Recombinase Polymerase Amplification Assay for the Detection of Haemonchus contortus in Goat Feces

  • Wu, Yao-Dong (Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University) ;
  • Wang, Qi-Qi (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Wang, Meng (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Elsheikha, Hany M. (Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham) ;
  • Yang, Xin (College of Veterinary Medicine, South China Agricultural University) ;
  • Hu, Min (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Zhu, Xing-Quan (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Xu, Min-Jun (Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University)
  • Received : 2020.10.11
  • Accepted : 2021.02.04
  • Published : 2021.04.30

Abstract

Haemonchosis remains a significant problem in small ruminants. In this study, the assay of recombinase polymerase amplification (RPA) combined with the lateral flow strip (LFS-RPA) was established for the rapid detection of Haemonchus contortus in goat feces. The assay used primers and a probe targeting a specific sequence in the ITS-2 gene. We compared the performance of the LFS-RPA assay to a PCR assay. The LFS-RPA had a detection limit of 10 fg DNA, which was 10 times less compared to the lowest detection limit obtained by PCR. Out of 24 goat fecal samples, LFS-RPA assay detected H. contortus DNA with 95.8% sensitivity, compared to PCR, 79.1% sensitivity. LFS-RPA assay did not detect DNA from other related helminth species and demonstrated an adequate tolerance to inhibitors present in the goat feces. Taken together, our results suggest that LFS-RPA assay had a high diagnostic accuracy for the rapid detection of H. contortus and merits further evaluation.

Keywords

Acknowledgement

This work was supported by grants from the Science and Technology plan projects of Guangdong province (2018LM2159) and the Marine Fisheries Department Guangdong projects of province (A201601A15).

References

  1. Melville L, Kenyon F, Javed S, McElarney I, Demeler J, Skuce P. Development of a loop-mediated isothermal amplification (LAMP) assay for the sensitive detection of Haemonchus contortus eggs in ovine faecal samples. Vet Parasitol 2014; 206: 308-312. https://doi.org/10.1016/j.vetpar.2014.10.022
  2. Besier RB, Kahn LP, Sargison ND, Van Wyk JA. Diagnosis, treatment and management of Haemonchus contortus in small ruminants. Adv Parasitol 2016; 93: 181-238. https://doi.org/10.1016/bs.apar.2016.02.024
  3. Getachew T, Dorchies P, Jacquiet P. Trends and challenges in the effective and sustainable control of Haemonchus contortus infection in sheep. Review. Parasite 2007; 14: 3-14. https://doi.org/10.1051/parasite/2007141003
  4. Fakae BB. Seasonal changes and hypobiosis in Haemonchus contortus infection in the West African Dwarf sheep and goats in the Nigerian derived savanna. Vet Parasitol 1990; 36: 123-130. https://doi.org/10.1016/0304-4017(90)90100-P
  5. Besier RB, Kahn LP, Sargison ND, Van Wyk JA. Chapter Four - The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Adv Parasitol 2016; 93: 95-143. https://doi.org/10.1016/bs.apar.2016.02.022
  6. Kotze AC, Prichard RK. Chapter nine - anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. Adv Parasitol 2016; 93: 397-428. https://doi.org/10.1016/bs.apar.2016.02.012
  7. Demeler J, Schein E, von Samson-Himmelstjerna G. Advances in laboratory diagnosis of parasitic infections of sheep. Vet Parasitol 2012; 189: 52-64. https://doi.org/10.1016/j.vetpar.2012.03.032
  8. Bott NJ, Campbell BE, Beveridge I, Chilton NB, Rees D, Hunt PW, Gasser RB. A combined microscopic-molecular method for the diagnosis of strongylid infections in sheep. Int J Parasitol 2009; 39: 1277-1287. https://doi.org/10.1016/j.ijpara.2009.03.002
  9. Yang X, Qi MW, Zhang ZZ, Gao C, Wang CQ, Lei WQ, Tan L, Zhao JL, Fang R, Hu M. Development and evaluation of a loop-mediated isothermal amplification (LAMP) assay for the detection of Haemonchus contortus in goat fecal samples. J Parasitol 2017; 103: 161-167. https://doi.org/10.1645/16-157
  10. Yang Y, Qin X, Zhang W, Li Z, Zhang S, Li Y, Zhang Z. Development of an isothermal recombinase polymerase amplification assay for rapid detection of pseudorabies virus. Mol Cell Probes 2017; 33: 32-35. https://doi.org/10.1016/j.mcp.2017.03.005
  11. Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PloS Biol 2006; 4: e204. https://doi.org/10.1371/journal.pbio.0040204
  12. Wu YD, Zhou DH, Zhang LX, Zheng WB, Ma JG, Wang M, Zhu XQ, Xu MJ. Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for equipment-free detection of Cryptosporidium spp. oocysts in dairy cattle feces. Parasitol Res 2016; 115: 3551-3555. https://doi.org/10.1007/s00436-016-5120-4
  13. Crannell ZA, Castellanos-Gonzalez A, Irani A, Rohrman B, White AC, Richards-Kortum R. Nucleic acid test to diagnose cryptosporidiosis: lab assessment in animal and patient specimens. Anal Chem 2014; 86: 2565-2571. https://doi.org/10.1021/ac403750z
  14. Teoh BT, Sam SS, Tan KK, Danlami MB, Shu MH, Johari J, Hooi PS, Brooks D, Piepenburg O, Nentwich O, Wilder-Smith A, Franco L, Tenorio A, AbuBakar S. Early detection of dengue virus by use of reverse transcription-recombinase polymerase amplification. J Clin Microbiol 2015; 53: 830-837. http://doi.org/10.1128/JCM.02648-14
  15. Wu YD, Xu MJ, Wang QQ, Zhou CX, Wang M, Zhu XQ, Zhou DH. Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for detection of Toxoplasma gondii in the environment. Vet Parasitol 2017; 243: 199-203. https://doi.org/10.1016/j.vetpar.2017.06.026
  16. Gao W, Huang H, Zhu P, Yan X, Fan J, Jiang J, Xu J. Recombinase polymerase amplification combined with lateral flow dipstick for equipment-free detection of Salmonella in shellfish. Bioprocess Biosyst Eng 2018; 41: 603-611. https://doi.org/10.1007/s00449-018-1895-2
  17. Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 1997; 63: 3741-3751. https://doi.org/10.1128/AEM.63.10.3741-3751.1997
  18. Radstrom P, Knutsson R, Wolffs P, Lovenklev M, Lofstrom C. Pre-PCR processing: Strategies to generate PCR-compatible samples. Mol Biotechnol 2004; 26: 133-146. https://doi.org/10.1385/MB:26:2:133
  19. Katrin K, Jekaterina F, Oana T, Julia S, Taavi L, Hiljar S, Imre M, Made L, Indrek T, ulo L. Sensitive and rapid detection of Chlamydia trachomatis by recombinase polymerase amplification directly from urine samples. J Mol Diagn 2014; 16: 127-135. https://doi.org/10.1016/j.jmoldx.2013.08.003
  20. Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J 2014; 13: 99. https://doi.org/10.1186/1475-2875-13-99
  21. Rosser A, Rollinson D, Forrest M, Webster BL. Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasit Vectors 2015; 8: 446. https://doi.org/10.1186/s13071-015-1055-3
  22. Crannell ZA, Rohrman B, Richards-Kortum R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One 2014; 9: e112146. https://doi.org/10.1371/ journal.pone.0112146
  23. Zou Y, Mason MG, Wang Y, Wee E, Turni C, Blackall PJ, Trau M, Botella JR. Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biol 2017; 15: e2003916. https://doi.org/10.1371/journal.pbio.2003916