DOI QR코드

DOI QR Code

Filter-mBART Based Neural Machine Translation Using Parallel Corpus Filtering

병렬 말뭉치 필터링을 적용한 Filter-mBART기반 기계번역 연구

  • Moon, Hyeonseok (Department of Computer Science and Engineering, Korea University) ;
  • Park, Chanjun (Department of Computer Science and Engineering, Korea University) ;
  • Eo, Sugyeong (Department of Computer Science and Engineering, Korea University) ;
  • Park, JeongBae (Department of Human Inspired AI Research, Korea University) ;
  • Lim, Heuiseok (Department of Computer Science and Engineering, Korea University)
  • 문현석 (고려대학교 컴퓨터학과) ;
  • 박찬준 (고려대학교 컴퓨터학과) ;
  • 어수경 (고려대학교 컴퓨터학과) ;
  • 박정배 (고려대학교 Human Inspired AI연구소) ;
  • 임희석 (고려대학교 컴퓨터학과)
  • Received : 2021.02.22
  • Accepted : 2021.05.20
  • Published : 2021.05.28

Abstract

In the latest trend of machine translation research, the model is pretrained through a large mono lingual corpus and then finetuned with a parallel corpus. Although many studies tend to increase the amount of data used in the pretraining stage, it is hard to say that the amount of data must be increased to improve machine translation performance. In this study, through an experiment based on the mBART model using parallel corpus filtering, we propose that high quality data can yield better machine translation performance, even utilizing smaller amount of data. We propose that it is important to consider the quality of data rather than the amount of data, and it can be used as a guideline for building a training corpus.

최신 기계번역 연구 동향을 살펴보면 대용량의 단일말뭉치를 통해 모델의 사전학습을 거친 후 병렬 말뭉치로 미세조정을 진행한다. 많은 연구에서 사전학습 단계에 이용되는 데이터의 양을 늘리는 추세이나, 기계번역 성능 향상을 위해 반드시 데이터의 양을 늘려야 한다고는 보기 어렵다. 본 연구에서는 병렬 말뭉치 필터링을 활용한 mBART 모델 기반의 실험을 통해, 더 적은 양의 데이터라도 고품질의 데이터라면 더 좋은 기계번역 성능을 낼 수 있음을 보인다. 실험결과 병렬 말뭉치 필터링을 거친 사전학습모델이 그렇지 않은 모델보다 더 좋은 성능을 보였다. 본 실험결과를 통해 데이터의 양보다 데이터의 질을 고려하는 것이 중요함을 보이고, 해당 프로세스를 통해 추후 말뭉치 구축에 있어 하나의 가이드라인으로 활용될 수 있음을 보였다.

Keywords

Acknowledgement

This work was supported by Institute for Information & communications Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No. 2020-0-00368, A Neural-Symbolic Model for Knowledge Acquisition and Inference Techniques) and this research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2018-0-01405) supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation).

References

  1. A. Vaswani et al. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.
  2. J. Devlin, M. W. Chang, K. Lee & K. Toutanova. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
  3. G. Lample & A. Conneau. (2019). Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291.
  4. K. Song, X. Tan, T. Qin, J. Lu & T. Y. Liu. (2019). Mass: Masked sequence to sequence pre-training for language generation. arXiv preprint arXiv:1905.02450.
  5. M. Lewis et al. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461.
  6. C. Park & H. Lim. (2020). A Study on the Performance Improvement of Machine Translation Using Public Korean-English Parallel Corpus. Journal of Digital Convergence, 18(6), 271-277. DOI : 10.14400/JDC.2020.18.6.271
  7. H. Khayrallah & P. Koehn. (2018). On the impact of various types of noise on neural machine translation. arXiv preprint arXiv:1805.12282. DOI : 10.18653/v1/w18-2709
  8. P. Koehn, V. Chaudhary, A. El-Kishky, N. Goyal, P. J. Chen & F. Guzman. (2020, November). Findings of the WMT 2020 shared task on parallel corpus filtering and alignment. In Proceedings of the Fifth Conference on Machine Translation (pp. 726-742).
  9. Y. Liu et al. (2020). Multilingual denoising pre-training for neural machine translation. Transactions of the Association for Computational Linguistics, 8, 726-742. DOI : 10.1162/tacl_a_00343
  10. M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer & O. Levy. (2020). Spanbert: Improving pre-training by representing and predicting spans. Transactions of the Association for Computational Linguistics, 8, 64-77. DOI : 10.1162/tacl_a_00300
  11. C. Park, Y. Lee, C. Lee & H Lim. (2020). "Quality, not Quantity? : Effect of parallel corpus quantity and quality on Neural Machine Translation," The 32st Annual Conference on Human Cog-nitive Language Technology.
  12. W. A. Gale & K. Church. (1993). A program for aligning sentences in bilingual corpora. Computational linguistics, 19(1), 75-102.
  13. M. Cettolo et al. (2017). Overview of the iwslt 2017 evaluation campaign. In International Workshop on Spoken Language Translation (pp. 2-14).
  14. M. Ott et al. (2019). fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint arXiv:1904.01038. DOI : 10.18653/v1/n19-4009
  15. T. Kudo & J. Richardson. (2018). Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226. DOI : 10.18653/v1/P18-1007
  16. K. Papineni, S. Roukos, T. Ward & W. J. Zhu. (2002, July). Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics (pp. 311-318).
  17. C. Park, Y. Yang, K. Park & H. Lim. (2020). Decoding strategies for improving low-resource machine translation. Electronics, 9(10), 1562. https://doi.org/10.3390/electronics9101562