DOI QR코드

DOI QR Code

Behavior of Clear-water Phase in Hybrid Water System with Fluvial and Lacustrine Characteristics

하천-호수 복합시스템에서 청수현상 발생 특성

  • Sim, YounBo (Department of Environmental Health Science, Sanghuh College of Life Sciences, Konkuk University) ;
  • Byeon, Myeong-Seop (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Kim, Jae-Hyun (Department of Environmental Health Science, Sanghuh College of Life Sciences, Konkuk University) ;
  • Yoo, Soon-Ju (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Im, Jong-Kwon (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Hwang, Soon-Jin (Department of Environmental Health Science, Sanghuh College of Life Sciences, Konkuk University)
  • 심연보 (건국대학교 환경보건과학과) ;
  • 변명섭 (국립환경과학원 한강물환경연구소) ;
  • 김재현 (건국대학교 환경보건과학과) ;
  • 유순주 (국립환경과학원 한강물환경연구소) ;
  • 임종권 (국립환경과학원 한강물환경연구소) ;
  • 황순진 (건국대학교 환경보건과학과)
  • Received : 2021.11.30
  • Accepted : 2021.12.13
  • Published : 2021.12.31

Abstract

The clear-water phase (CWP) is a notable limnological phenomenon in freshwater systems caused by predatory interactions between large filter-feeding zooplankton and phytoplankton. However, the mechanisms and factors that influence the extent of CWP, particularly in complex water systems with both fluvial and lacustrine characteristics, remain poorly understood. The present study evaluated CWP occurrence patterns at different sites in a large reservoir located in a temperate monsoon region (Lake Paldang, Korea); the relationships among factors associated with CWP occurrence, such as transparency, zooplankton diversity, and chlorophyll a concentration were investigated. Transparency exhibited significant correlations with precipitation and retention time, as well as the relative abundance of zooplankton (p<0.01), suggesting that a change in the retention time due to precipitation can alter CWP. Data collected before and after CWP occurrence were analyzed using paired t-test to determine variations in CWP occurrence based on the water system characteristics. The results demonstrated that various factors were associated with CWP occurrence in the fluvial-type and lacustrine-type sites. The correlation between zooplankton biomass and transparency was stronger in the lacustrine-type sites than in the fluvial-type sites. The lacustrine-type sites, where cladoceran emergence is common and is associated with long retention times, favored CWP occurrence. The results suggest that lacustrine-type sites, which are conducive to zooplankton development and have relatively long retention times, enhance CWP occurrence. Furthermore, CWP occurrence was notable in spring, and the present study revealed that site-specific CWP could occur throughout the year, regardless of the season.

팔당호에서 청수현상 발생은 지점별로 다른 양상을 보였으며, 발생시기는 3~12월로 연중 발생하는 것으로 나타났고, 주로 3~6월에 발생하였다. 청수기 발생빈도는 팔당댐앞, 경안천수역, 남한강수역, 북한강수역 순으로 나타났다. 청수현상 발생시 주요 요인인 투명도, 동물플랑크톤 현존량, Chl-a와 환경요인 상관분석 결과 수리·수문요인인 강우량, 체류시간은 투명도 및 탁도와 유의한 상관관계를 나타내 강우로 인한 체류시간의 변화가 청수현상을 좌우할 수 있는 것으로 나타났다. 또한 투명도는 청수기를 야기하는 것으로 알려진 동물플랑크톤 중 지각류 현존량 및 점유율과 유의한 상관관계를 나타냈으며, 지각류 현존량 및 점유율은 수온과 유의한 상관관계를 나타내 봄철 수온의 상승에 따른 지각류의 발생이 청수현상 발생을 야기할 수 있는 것으로 나타났다. 이에 따라 수리조건이 정체형 호수와 다른 하천형의 호수에서는 청수현상이 결빙기 이후 봄철뿐만 아니라 동일한 수계 내에서도 지점별 특성에 따라 다르게 나타날 수 있으며, 수체가 안정화될 시에 동물플랑크톤(지각류)의 증가, 식물플랑크톤 현존량 감소, 투명도가 증가하는 청수현상이 조건이 충족될 시 계절에 불문하고 연중 발생할 수 있는 것으로 나타났다.

Keywords

Acknowledgement

본 논문은 환경부 국립환경과학원의 지원을 받아 수행되었습니다(NIER-2021-01-01-085).

References

  1. Arfe, A., P. Quatto, A. Zambon, H.J. MacIsaac and M. Manca. 2019. Long-Term Changes in the Zooplankton Community of Lake Maggiore in Response to Multiple Stressors: A Functional Principal Components Analysis. Water 11: 962. https://doi.org/10.3390/w11050962
  2. Arndt, H. and B. Nixdorf. 1991. Spring clear-water phase in a eutrophic lake: Control by herbivorous zooplankton enhanced by grazing on components. Internationale Vereinigung fur theoretische und angewandte Limnologie: Verhandlungen 30: 879-883.
  3. Baranyi, C., T. Hein, C. Holarek, S. Keckeis and F. Schiemer. 2002. Zooplankton biomass and community structure in a Danube River floodplain system: Effects of hydrology. Freshwater Biology 47: 473-482. https://doi.org/10.1046/j.1365-2427.2002.00822.x
  4. Chang, C.Y. and G.S. Min. 2005. Key to the Korean freshwater cyclopoid copepods and their DNA taxonomy. Junghaeng-Sa Publish 1-153.
  5. Droscher, I., K. Finlay, A. Patoine and P.R. Leavitt. 2008. Daphnia control of the spring clear-water phase in six polymictic lakes of varying productivity and size. Internationale Vereinigung fur theoretische und angewandte Limnologie: Verhandlungen 30(2): 186-190.
  6. Elser, J.J. and C.R. Goldman. 1990. Experimental separation of the direct and indirect effects of herbivorous zooplankton on phytoplankton in a subalpine lake. Internationale Vereinigung fur theoretische und angewandte Limnologie: Verhandlungen 24: 493-498.
  7. George, D.G., D.P. Hewitt, J.W.G. Lund and W.J.P. Smyly. 1990. The relative effects of enrichment and climate change on the long-term dynamics of Daphnia in Esthwaite Water, Cumbria. Freshwater Biology 23: 55-70. https://doi.org/10.1111/j.1365-2427.1990.tb00253.x
  8. George, D.G., J.F. Talling and E. Rigg. 2000. Factors influencing the temporal coherence of five lakes in the English Lake District. Freshwater Biology 43: 449-461. https://doi.org/10.1046/j.1365-2427.2000.00566.x
  9. Hambright, K.D., T. Zohary and H. Gude. 2007. Microzooplankton dominate carbon flow and nutrient cycling in a warm subtropical freshwater lake. Limnology and Oceanography 52: 1018-1025. https://doi.org/10.4319/lo.2007.52.3.1018
  10. Han River environment research center (HRERC). 2016. Survey on the Environment and Ecosystem of Lakes in the Han River System.
  11. Hwang, S.J., K.H. Kim, C.H. Park, W.B. Seo, B.G. Choi, H.S. Eum, M.H. Park, H.R. Noh, Y.B. Sim and J.K. Shin. 2016. Hydro-meteorological Effects on Water Quality Variability in Paldang Reservoir, Confluent Area of the South-Han River-North-Han River-Gyeongan Stream, Korea. Korean Journal of Ecology and Environment 49: 334-342. https://doi.org/10.11614/KSL.2016.49.4.334
  12. Hwang, S.J., Y.B. Sim, B.G. Choi, K.H. Kim, C.H. Park, W.B. Seo, M.H. Park, S.W. Lee and J.K. Shin. 2017. Rainfall and Hydrological Comparative Analysis of Water Quality Variability in Euiam Reservoir, the North-Han River, Korea. Korean Journal of Ecology and Environment 50: 29-45. https://doi.org/10.11614/KSL.2017.50.1.029
  13. Iskin, U., N. Filiz, Y. Cao, E.M. Neif, B. Oglu, T.L. Lauridsen, T.A. Davidson, M. Sondergaard, u.N. Tavsanoglu, M. Beklioglu and E. Jeppesen. 2020. Impact of Nutrients, Temperatures, and a Heat Wave on Zooplankton Community Structure: An Experimental Approach. Water 12: 3416. https://doi.org/10.3390/w12123416
  14. Jeong, H.G., A.A. Kotov and W. Lee. 2014. Checklist of the freshwater Cladocera (Crustacea: Branchiopoda) of South Korea. Proceedings of the Biological Society of Washington 127: 216-222. https://doi.org/10.2988/0006-324X-127.1.216
  15. John, D.M., B.A. Whitton and A.J. Brook. 2002. The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae. Cambridge University Press.
  16. Jeppesen, E., J.P. Jensen, C. Jensen, B. Faafeng, D.O. Hessen, M. Sondergaard, T. Lauridsen, P. Brettum and K. Christoffersen. 2003. The Impact of Nutrient State and Lake Depth on Top-down Control in the Pelagic Zone of Lakes: A Study of 466 Lakes from the Temperate Zone to the Arctic. Ecosystems 6: 313-325. https://doi.org/10.1007/PL00021503
  17. Keckeis, S., C. Baranyi, T. Hein, C. Holarek, P. Riedler and F. Schiemer. 2003. The significance of zooplankton grazing in a floodplain system of the River Danube. Journal of Plankton Research 25: 243-253. https://doi.org/10.1093/plankt/25.3.243
  18. Kim, J.K. and W.H. Hong. 1992. Studies on the phisical environmental factor analysis for water quality management in man-made lake of Korea. Korean Journal of Environment Science 1(2): 49-57.
  19. Kim, J.M., J.D. Park, H.R. Noh and M.S. Han. 2002. Changes of seasonal and vertical water quality in Soyang and Paldang river-reservoir system, Korea. Korean Journal of Limnology 35(1): 10-20.
  20. Kong, D.S. 1997. Limnological and ecological characteristic of a river-reservoir(Paldang), Korea. Korean Journal of Limnology 30(supplement): 524-535.
  21. Lampert, W., W. Fleckner, H. Rai and B.E. Taylor. 1986. Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase. Limnology and Oceanography 31: 478-490. https://doi.org/10.4319/lo.1986.31.3.0478
  22. Lampert, W. 1987. Laboratory studies on zooplankton-cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research 21: 483-490. https://doi.org/10.1080/00288330.1987.9516244
  23. Luecke, C., M.J. Vanni, J.J. Magnuson, J.F. Kitchell and P.T. Jacobson. 1990. Seasonal regulation of Daphnia populations by planktivorous fish: Implications for the spring clear-water phase. Limnology and Oceanography 35: 1718-1733. https://doi.org/10.4319/lo.1990.35.8.1718
  24. Lund, J.W.G. 1950. Studies on Asterionella formosa hass: II. Nutrient depletion and the spring maximum. Journal of Ecology 38: 15-35. https://doi.org/10.2307/2256523
  25. Maberly, S.C., M.A. Hurley, C. Butterwick, J.E. Corry, S.I. Heaney, A.E. Irish, G.H.M. Jaworski, J.W.G. Lund, C.S. Reynolds and J.V. Roscoe. 1994. The rise and fall of Asterionella formosa in the South Basin of Windermere: Analysis of a 45-year series of data. Freshwater Biology 31: 19-34. https://doi.org/10.1111/j.1365-2427.1994.tb00835.x
  26. Matsuzaki, S.S., R.C. Lathrop, S.R. Carpenter, J.R. Walsh, M.J.V. Zanden, M.R. Gahler and E.H. Stanley. 2021. Climate and food web effects on the spring clear-water phase in two north-temperate eutrophic lakes. Limnology and Oceanography 66: 30-46. https://doi.org/10.1002/lno.11584
  27. Ministry of Environment(MOE). 2014. Standard Methods for the Examination Water Quality. Ministry of Environment.
  28. Muylaert, K. and W. Vyverman. 2006. Impact of a Flood Event on the Planktonic Food Web of the Schelde Estuary (Belgium) in Spring 1998. Hydrobiologia 559: 385-394. https://doi.org/10.1007/s10750-005-1081-9
  29. Park, H.-K., M.S. Byeon, E.K. Kim, H.J. Lee, M.J. Chun and D.I. Jung. 2004. Water quality and phytoplankton distribution pattern in upper inflow rivers of Lake Paldang. Journal of Korean Society on Water Environment 20: 615-624.
  30. Segers, H. 1995a. Rotifera 2. The Lecanidae (Monogononta). In Nogrady, T. & H.J. Dumont (eds), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 6. SPB Academic, The Hague, The Netherlands.
  31. Segers, H. 1995b. World records of Lecanidae (Rotifera: Monogononta). Studiedocumenten van het Koninklijk Belgisch Instituut voor Natuurwetenschappen 81: 114.
  32. Sim, Y.B., H.G. Jeong, J.K. Im, S.J. Youn, M.S. Byun and S.J. Yoo. 2018. Spatial and Temporal Distribution of Zooplankton Communities in Lake Paldang. Korean Journal of Ecology and Environment 51: 287-298. https://doi.org/10.11614/KSL.2018.51.4.287
  33. Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv fur Hydrobiologie 106: 433-471.
  34. Talling, J.F. 1971. The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton: With 14 figures in the text and on 1 folder. Internationale Vereinigung fur Theoretische und Angewandte Limnologie: Mitteilungen 19: 214-243.
  35. Talling, J.F. 1993. Comparative seasonal changes, and inter-annual variability and stability, in a 26-year record of total phytoplankton biomass in four English lake basins. Hydrobiologia 268: 65-98. https://doi.org/10.1007/BF00006879
  36. Tailing, J.F. 2002. Freshwater phytoplankton-Accessible, microbial, influential population dynamics. Internationale Vereinigung fur theoretische und angewandte Limnologie: Verhandlungen 28: 7-28.
  37. Talling, J.F. 2003. Phytoplankton-Zooplankton seasonal timing and the 'clear-water phase'in some English lakes. Freshwater Biology 48: 39-52. https://doi.org/10.1046/j.1365-2427.2003.00968.x
  38. Thackeray, S.J., P.A. Henrys, H. Feuchtmayr, I.D. Jones, S.C. Maberly and I.J. Winfield. 2013. Food web de-synchronization in England's largest lake: An assessment based on multiple phenological metrics. Global Change Biology 19: 3568-3580. https://doi.org/10.1111/gcb.12326
  39. Thornton, K.W., B.L. Kimmel and F.E. Payne. 1990. Reservoir Limnology-Ecological Perspectives. A Wiley Interscience Publication, John Wiley&Sons, Inc.
  40. Wehr, J.D., R.G. Sheath and J.P. Kociolek. 2003. Freshwater algae of North America: ecology and classification. Academic Press: Elsevier.
  41. Winder, M. and D.E. Schindler. 2004. Climatic effects on the phenology of lake processes. Global Change Biology 10: 1844-1856. https://doi.org/10.1111/j.1365-2486.2004.00849.x
  42. Winston, W.E. and R.E. Criss. 2002. Geochemical variations during flash flooding, Meramec River basin, May 2000. Journal of Hydrology 265: 149-163. https://doi.org/10.1016/S0022-1694(02)00105-1
  43. You, K.A., M.S. Byeon and S.J. Hwang. 2012. Effects of Hydraulic-hydrological Changes by Monsoon Climate on the Zooplankton Community in Lake Paldang, Korea. Korean Journal of Limnology 45(3): 278-288.