DOI QR코드

DOI QR Code

IEEE 1588 PTP를 이용한 전파 지연 거리 측정의 정밀도 향상 기법

Precision Improvement Technique of Propagation Delay Distance Measurement Using IEEE 1588 PTP

  • 투고 : 2021.02.15
  • 심사 : 2021.04.05
  • 발행 : 2021.06.01

초록

IEEE 1588 PTP는 두 시스템이 GPS의 도움 없이 송수신 시간 정보를 포함한 패킷을 주고받으면서 동기화하는 정밀 시각 프로토콜인데 시각 동기화 과정에서 전파 지연 시간을 계산하고 이를 이용하여 두 시스템 간의 거리를 측정할 수 있다. 본 논문에서는 수신 패킷의 프리앰블에서 추출한 타이밍 오류 정보를 이용하여 변조 심벌 주기 이하로 거리 측정 정밀도를 향상하는 방법을 제안하였다. 컴퓨터 시뮬레이션을 통해 거리 측정 정밀도는 프리앰블 PN 시퀀스의 길이와 신호대잡음비에 비례하는 것을 보였다.

IEEE 1588 PTP is a precision time protocol in which two systems synchronize without the aid of GPS by exchanging packets including transmission/reception time information. In the time synchronization process, the propagation delay time can be calculated and the distance between the two systems can be measured using this. In this paper, we proposed a method to improve the distance measurement precision less than the modulation symbol period using the timing error information extracted from the preamble of the received packet. Computer simulations show that the distance measurement precision is proportional to the length of the preamble PN sequence and the signal-to-noise ratio.

키워드

참고문헌

  1. Berner, J. B. and Bryant, S. H., "Operations comperation of deep space ranging types: sequential tone vs. pseudo-noise," Proceeding of the 2002 IEEE Aerospace Conference, Vol. 3, 2002, pp. 1313~1326.
  2. Gill, W. J., "A comparison of binary delay-lock tracking-loop implementations," IEEE Transactions on Aerospace and Electronic Systems, AES-2, July 1966, pp. 415~424.
  3. Yamamoto, Z-I., Hirosawa, H. and Nomura, T., "Dual speed PN ranging system for tracking of deep space probes," IEEE Transactions on Aerospace and Electronic Systems, AES-23, Vol. 4, July 1987, pp. 519~527.
  4. "Pseudo-noise (PN) ranging systems," The Consultative Committee for Space Data Systems, Informational Report, CCSDS414.0-G-2, February 2014.
  5. Ren, G., Sun, C., Ni, H. and Bai, Y., "OFDM-based precise ranging technique in space applications," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 3, July 2011, pp. 2217~2221. https://doi.org/10.1109/TAES.2011.5937294
  6. Sheng, B., "Enhanced OFDM-based ranging method for space applications," IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, No. 2, April 2014, pp. 1606~1609. https://doi.org/10.1109/taes.2014.120583
  7. Yan, C., Wang, J., Fu, L., Jiang, C., Chen, M. and Ren, Y., "Timing synchronization and ranging in networked UAV-aided OFDM systems," Journal of Communications and Information Networks, Vol. 3, No. 4, December 2018, pp. 45~54. https://doi.org/10.1007/s41650-018-0037-y
  8. Boo, J-I., Ha, J-W., Kim, K-S. and Kim, B., "Wireless TDD time synchronization technique considering the propagation delay between mobile vehicles," Journal of Advanced Navigation Technology, Vol. 23, No. 5, October 2019, pp. 392~399.