DOI QR코드

DOI QR Code

Artificial Intelligence(AI) Fundamental Education Design for Non-major Humanities

비전공자 인문계열을 위한 인공지능(AI) 보편적 교육 설계

  • 백수진 (단국대학교 SW중심대학사업단) ;
  • 신윤희 (단국대학교 자유교양대학)
  • Received : 2021.04.07
  • Accepted : 2021.05.20
  • Published : 2021.05.28

Abstract

With the advent of the 4th Industrial Revolution, AI utilization capabilities are being emphasized in various industries, but AI education design and curriculum research as universal education is currently lacking. This study offers a design for universal AI education to further cultivate its use in universities. For the AI basic education design, a questionnaire was conducted for experts three times, and the reliability of the derived design contents was verified by reflecting the results. As a result, the main competencies for cultivating AI literacy were data literacy, AI understanding and utilization, and the main detailed areas derived were data structure understanding and processing, visualization, word cloud, public data utilization, and machine learning concept understanding and utilization. The educational design content derived through this study is expected to increase the value of competency-centered AI universal education in the future.

4차 산업혁명 시대가 도래함에 따라 다양한 산업 분야에서 AI 활용역량이 강조되고 있다. 그러나 현재 보편적 교육으로서의 AI 교육 설계 연구 및 역량 중심교육 커리큘럼 연구가 부족하다. 본 연구에서는 대학에서의 비전공자를 위한 역량 중심 AI 리터러시 함양을 위한 보편적 AI 교육을 설계하는 데 목적을 둔다. 인문계열 AI 기초교육 설계를 위해 3차에 걸쳐 전문가 대상으로 설문을 진행하였고, 그 결과를 반영하여 도출된 설계 내용의 신뢰도를 검증하였다. 그 결과, AI 리터러시 함양을 위한 주요역량은 데이터 리터러시, AI 이해 및 활용능력이었으며, 이를 토대로 도출된 주요 세부 영역으로는 데이터 구조 이해 및 가공, 시각화, 워드클라우드, 공공데이터 활용, 머신러닝 개념 이해 및 활용이었다. 본 연구를 통해 도출된 교육 설계 내용은 향후 역량 중심의 AI 보편적 교육의 필요성과 가치를 높일 수 있을 것으로 기대한다.

Keywords

References

  1. Y. S. Kim, (2019). Global Trend of AI Talent Develpment Policy in Major Countries. MONTHLY SOFTWARE ORIENTED SOCIETY, 62(8). 29-36
  2. R. Graham. (2018). The global state of the art in engineering education. Massachusetts Institute of Technology(MIT) Report, Massachusetts. USA
  3. The Ministry of Science and ICT (MSIT). (2019). the artificial intelligence ('AI') national strategy. https://www.msit.go.kr/bbs/view.do?sCode=user&mId=113&mPid=112&bbsSeqNo=94&nttSeqNo=2405727
  4. H. K. Jho. (2017). The Changes of Higher Education and the Tasks of General Education according to the Fourth Industrial Revolution. Korean Journal of General Education, 11(2), 53-89.
  5. E.K Lee. (2020). A Comparative Analysis of Contents Related to Artificial Intelligence in National and International K-12. The Journal of Association Of Computer Education, 23(1), 37-44. DOI : 10.32431/kace.2020.23.1.003
  6. M.. Y. Ryu & S. K. Han, (2019). AI Education Programs for Deep-Learning Concepts. Journal of The Korean Association of Information Education, 23(6), 583-590. DOI : 10.14352/jkaie.2019.23.6.583
  7. H. S. Woo, H. J. Lee, J. M. Kim, & W. K. Lee (2020). Analysis of Artificial Intelligence Curriculum of SW Universities. The Journal of Association Of Computer Education 23(2), 13-20. DOI : 10.32431/kace.2020.23.2.002
  8. Long, D & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1-16).
  9. D. G. Kim, J. J. Kim, H. J. Kim, Y. S. Choi & J. H. Choi, (2017). Future Job Prospects of the 4th Industrial Revolution, Korea Employment Information Service Report.
  10. J. Y. Hong & Y. S. Kim. (2020). Development of AI Data Science Education Program to Foster Data Literacy of Elementary School Students. Journal of The Korean Association of Information Education, 24(6), 633-641. DOI : 10.14352/jkaie.2020.24.6.633.
  11. Richardson, I., & Delaney, Y. (2009, February). Problem based learning in the software engineering classroom. In 2009 22nd Conference on Software Engineering Education and Training (pp. 174-181). IEEE.
  12. H. I. Ryu & J. W. Cho. (2021). Development of Artificial Intelligence Education System for K-12 Based on 4P. Journal of Digital Convergence, 19(1), 141-149. DOI : 10.14400/JDC.2021.19.1.141
  13. Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation?. Technological forecasting and social change, 114, 254-280. DOI : 10.1016/j.techfore.2016.08.019.
  14. J. S. Sung, S. H. Kim, & H. C. Kim (2015). Analysis of Art and Humanity Major Learners' Features in Programming Class. The Journal of Association Of Computer Education, 18(3), 25-35. DOI : 10.32431/KACE.2015.18.3.003
  15. Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel psychology, 28(4), 563-575. DOI : 10.1111/j.1744-6570.1975.tb01393.x