DOI QR코드

DOI QR Code

A BOUND ON HÖLDER REGULARITY FOR ${\bar{\partial}}$-EQUATION ON PSEUDOCONVEX DOMAINS IN ℂn WITH SOME COMPARABLE EIGENVALUES OF THE LEVI-FORM

  • Received : 2020.06.30
  • Accepted : 2021.01.14
  • Published : 2021.05.31

Abstract

Let Ω be a smoothly bounded pseudoconvex domain in ℂn and assume that the (n - 2)-eigenvalues of the Levi-form are comparable in a neighborhood of z0 ∈ bΩ. Also, assume that there is a smooth 1-dimensional analytic variety V whose order of contact with bΩ at z0 is equal to 𝜂 and 𝚫n-2(z0) < ∞. We show that the maximal gain in Hölder regularity for solutions of the ${\bar{\partial}}$-equation is at most ${\frac{1}{\eta}}$.

Keywords

References

  1. D. W. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), no. 3, 429-466. https://doi.org/10.1007/BF01215657
  2. S. Cho, Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Math. Z. 211 (1992), no. 1, 105-119. https://doi.org/10.1007/BF02571421
  3. S. Cho, A lower bound on the Kobayashi metric near a point of finite type in Cn, J. Geom. Anal. 2 (1992), no. 4, 317-325. https://doi.org/10.1007/BF02934584
  4. S. Cho, Estimates of invariant metrics on pseudoconvex domains with comparable Levi form, J. Math. Kyoto Univ. 42 (2002), no. 2, 337-349. https://doi.org/10.1215/kjm/1250283875
  5. S. Cho, Boundary behavior of the Bergman kernel function on pseudoconvex domains with comparable Levi form, J. Math. Anal. Appl. 283 (2003), no. 2, 386-397. https://doi.org/10.1016/S0022-247X(03)00160-4
  6. S. Cho, Estimates on the Bergman kernels on pseudoconvex domains with comparable Levi-forms, Complex Var. Elliptic Equ. 64 (2019), no. 10, 1703-1732. https://doi.org/10.1080/17476933.2018.1549037
  7. S. Cho and Y. H. You, On sharp Holder estimates of the Cauchy-Riemann equation on pseudoconvex domains in Cn with one degenerate eigenvalue, Abstr. Appl. Anal. 2015 (2015), Art. ID 731068, 6 pp. https://doi.org/10.1155/2015/731068
  8. J. P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615-637. https://doi.org/10.2307/2007015
  9. K. Diederich, B. Fischer, and J. E. Fornaess, Holder estimates on convex domains of finite type, Math. Z. 232 (1999), no. 1, 43-61. https://doi.org/10.1007/PL00004758
  10. N. Kerzman, Holder and Lp estimates for solutions of ${\bar{\partial}}u$ = f in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301-379. https://doi.org/10.1002/cpa.3160240303
  11. S. G. Krantz, Characterizations of various domains of holomorphy via ∂ estimates and applications to a problem of Kohn, Illinois J. Math. 23 (1979), no. 2, 267-285. http://projecteuclid.org/euclid.ijm/1256048239 https://doi.org/10.1215/ijm/1256048239
  12. J. D. McNeal, On sharp Holder estimates for the solutions of the ∂-equations, in Several complex variables and complex geometry, Part 3 (Santa Cruz, CA, 1989), 277-285, Proc. Sympos. Pure Math., 52, Part 3, Amer. Math. Soc., Providence, RI, 1991.
  13. R. M. Range, On Holder estimates for ∂u = f on weakly pseudoconvex domains, in Several Complex Variables (Cortona, 1976/1977), 247-267, Scuola Norm. Sup. Pisa, Pisa, 1978.
  14. Y. You, Necessary conditions for Holder regularity gain of ∂ equation in C3, arXiv. 1504.05432. Ph. D. thesis, Purdue University, West Lafayette, 2011.