Bull. Korean Math. Soc. 58 (2021), No. 3, pp. 781-794

https://doi.org/10.4134/BKMS.b200569 pISSN: 1015-8634 / eISSN: 2234-3016

A BOUND ON HÖLDER REGULARITY FOR $\overline{\partial}$ -EQUATION ON PSEUDOCONVEX DOMAINS IN \mathbb{C}^n WITH SOME COMPARABLE EIGENVALUES OF THE LEVI-FORM

SANGHYUN CHO

ABSTRACT. Let Ω be a smoothly bounded pseudoconvex domain in \mathbb{C}^n and assume that the (n-2)-eigenvalues of the Levi-form are comparable in a neighborhood of $z_0 \in b\Omega$. Also, assume that there is a smooth 1-dimensional analytic variety V whose order of contact with $b\Omega$ at z_0 is equal to η and $\Delta_{n-2}(z_0) < \infty$. We show that the maximal gain in Hölder regularity for solutions of the $\overline{\partial}$ -equation is at most $\frac{1}{n}$.

1. Introduction

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n and assume that $z_0 \in b\Omega$. Suppose that there exist a neighborhood U of z_0 and a constant C > 0 so that for each $v \in L^{0,1}_{\infty}(\Omega)$ with $\overline{\partial}v = 0$, there is a $u \in L^2(\Omega) \cap \Lambda_{\kappa}(U \cap \overline{\Omega})$ such that $\overline{\partial}u = v$ in Ω and

$$(1.1) ||u||_{\Lambda_{r}(U\cap\overline{\Omega})} \leq C||v||_{L_{\infty}(\Omega)},$$

for some $\kappa > 0$, where $\Lambda_{\kappa}(S)$ denotes the Hölder space of order κ on S. In this event, we say the Hölder estimates of order $\kappa > 0$ for $\overline{\partial}$ -equation hold on U.

When Ω is a bounded strongly pseudoconvex domain in \mathbb{C}^n , (1.1) holds for $\kappa = \frac{1}{2}$ [10]. For weakly pseudoconvex domain in \mathbb{C}^n , however, (1.1) is known only for some special cases. Namely, pseudoconvex domains of finite type in \mathbb{C}^2 [12, 13], convex finite type domains in \mathbb{C}^n [9], etc. Therefore, the Hölder estimate for general pseudocovex domains in \mathbb{C}^n is one of the big questions in several complex variables.

Meanwhile, it is of great interest to find a necessary condition or optimal possible gain of $\kappa > 0$ in (1.1). Normally this question depends on the boundary geometry of Ω near $z_0 \in b\Omega$. Several authors have obtained necessary conditions for Hölder regularity of $\overline{\partial}$ on restricted classes of domains [11–14].

Let $\Delta_q(z)$ denote the D'Angelo's finite q-type at z, and let $\Delta_q^{Reg}(z)$ be the "regular finite q-type", which is defined by the maximum order of contact

Received June 30, 2020; Accepted January 14, 2021.

2010 Mathematics Subject Classification. Primary 32W05, 32T25, 32F18.

Key words and phrases. Hölder estimates of $\overline{\partial},$ finite type, comparable Levi-forms.

of non-singular q-dimensional varieties [8]. Note that $\Delta_p(z) \leq \Delta_q(z)$ (and $\Delta_p^{Reg}(z) \leq \Delta_q^{Reg}(z)$) if $p \geq q$, $\Delta_q^{Reg}(z) \leq \Delta_q(z)$, and $\Delta_q^{Reg}(z)$ is a positive integer.

When $\Delta_{n-1}(z_0) := m_{n-1} < \infty$, Krantz [11] showed that $\kappa \leq \frac{1}{m_{n-1}}$. Krantz's result is sharp for $\Omega \subset \mathbb{C}^2$, and when α is a (0, n-1)-form. In [12], McNeal proved sharp Hölder estimates for (0,1)-form α under the condition that Ω has a holomorphic support function at $z_0 \in \Omega$. Note that the existence of holomorphic support function is satisfied for restricted domains and it is often the first step to prove the Hölder estimates for the $\overline{\partial}$ -equation [13]. In the rest of this section, we let Ω be a smoothly bounded pseudoconvex domain in \mathbb{C}^n with smooth defining function r, that is, $\Omega = \{z : r(z) < 0\} \in \mathbb{C}^n$.

Definition 1.1. Let $\lambda_1(z), \ldots, \lambda_{n-1}(z)$ be the nonnegative eigenvalues of the Levi-form, $\partial \overline{\partial} r(z)$. We say the eigenvalues $\{\lambda_k : k = s, \ldots, s+l\}$ are comparable in a neighborhood U of $z_0 \in b\Omega$ if there are constants c, C > 0 such that

$$c\lambda_j(z) \le \lambda_k(z) \le C\lambda_j(z), \quad j, k = s, \dots, s+l, \quad z \in U.$$

Definition 1.2. We say that a 1-dimensional analytic variety V has order of contact η at $z_0 \in b\Omega$ if there are constants c, C > 0 such that

$$c|z - z_0|^{\eta} \le |r(z)| \le C|z - z_0|^{\eta}$$

for all $z \in V$ sufficiently close to z_0 .

Example. Let $\Omega \subset \mathbb{C}^4$ be a domain defined by

$$\Omega = \{z : r(z) = 2Rez_4 + |z_1|^{10} + (|z_2|^2 + |z_3|^2)^{11/3} < 0\}.$$

Then, $\Delta_1(0)=10=\Delta_1^{Reg}(0),\ \Delta_2(0)=\frac{22}{3},\ \text{and}\ V=\{(t,0,0,0):|t|\leq a\}$ is a smooth variety whose order of contact with $b\Omega$ at 0 is 10. Set $L_j=\frac{\partial}{\partial z_j}-(\frac{\partial r}{\partial z_4})^{-1}\frac{\partial r}{\partial z_j}\frac{\partial}{\partial z_4},\ j=1,2,3.$ Then, the eigenvalues $\lambda_k(z)\approx\partial\overline{\partial}r(z)(L_k,\overline{L}_k),\ k=2,3,$ are comparable near 0.

In this paper, we want to study a necessary condition for the Hölder estimates of the $\overline{\partial}$ equation when (n-2)-eigenvalues of the Levi-form are comparable and $\Delta_{n-2}(z_0) < \infty$:

Theorem 1.3. Let Ω be a smoothly bounded pseudoconvex domain in \mathbb{C}^n , $n \geq 3$, and assume that there is a smooth 1-dimensional variety whose order of contact at $z_0 \in b\Omega$ is $\eta < \infty$. Also, assume that the (n-2)-eigenvalues of the Levi-forms are comparable in a neighborhood of $z_0 \in b\Omega$ and $\Delta_{n-2}(z_0) < \infty$. If there exist a neighborhood U of z_0 and a constant C > 0 so that for each $v \in L^{0,1}_{\infty}(\Omega)$ with $\overline{\partial}v = 0$, there is a $u \in L^2(\Omega) \cap \Lambda_{\kappa}(U \cap \overline{\Omega})$ such that $\overline{\partial}u = v$ on Ω and

$$(1.2) ||u||_{\Lambda_{\infty}(U\cap\overline{\Omega})} \le C||v||_{L_{\infty}(\Omega)},$$

then $\kappa \leq \frac{1}{n}$.

Let $z = (z_1, \ldots, z_n)$ be local coordinates about z_0 . In the rest of this paper, we set $z' = (z_2, \ldots, z_n)$, $z'' = (z_2, \ldots, z_{n-1})$, and the same notations will be used for other coordinates or multi-indices, $\alpha = (\alpha_1, \ldots, \alpha_n)$, that is, $\alpha' = (\alpha_2, \ldots, \alpha_n)$, and $\alpha'' = (\alpha_2, \ldots, \alpha_{n-1})$, etc.

Remark 1.4. (1) Since V is a smooth analytic variety, we note that η is a positive integer and $\Delta_{n-1}(z_0) := m_{n-1} \leq \eta$. Thus, we have $\kappa \leq \frac{1}{\eta} \leq \frac{1}{m_{n-1}}$ in (1.2) which improves Krantz's result.

(2) In following, we will fix z_1 and consider the z_1 slice of Ω :

(1.3)
$$\Omega_{z_1} := \{ (z_1, z') : (z_1, z') \in \Omega \}.$$

Then, Ω_{z_1} can be regarded as a bounded pseudoconvex domain in \mathbb{C}^{n-1} . Since the (n-2)-eigenvalues of the Levi-form are comparable, the condition $\Delta_{n-2}(z_0) < \infty$ will play as the role of the condition $\Delta_1(z_0) < \infty$ on each Ω_{z_1} .

(3) If n = 3, the comparable eigenvalues condition of the Levi form holds vacuously. In this case, You [14] proved Theorem 1.3. Note that $\Delta_2(z_0) \leq \Delta_1^{Reg}(z_0)$ when n = 3. Consider the domain in \mathbb{C}^3 (see [8]) defined by

$$r(z) = Rez_3 + |z_1^2 - z_2^3|^2.$$

Then $\Delta_1^{Reg}(0) = 6$, and $\Delta_2(0) = 4$ while $\Delta_1(0) = \infty$ as the complex analytic curve $\gamma(t) = (t^3, t^2, 0)$ lies in the boundary. Note that $\gamma(t)$ is not a smooth curve.

(4) Whenever we have (n-2)-positive eigenvalues, these eigenvalues are comparable and hence Theorem 1.3 implies the results in [7] where we assumed that we have (n-2)-positive eigenvalues and $\Delta_1(z_0) < \infty$.

In Section 2, we construct special coordinates at each reference point and show that the z_1 -coordinate represents the given variety V, and the z''-directions represent the comparable Levi-form directions. Let $C_b(z_0, \delta_0)$ denote the curve close to the z_1 -direction as defined in (2.8). To prove the main theorem (Theorem 1.3), for each small $\delta > 0$, we need to construct a uniformly bounded holomorphic function f_{δ} on Ω that satisfies

$$\left| \frac{\partial f_{\delta}}{\partial z_n} (z_{\delta}) \right| \ge \frac{1}{\delta}$$

for each $z_{\delta} \in C_b(z_0, \delta_0)$.

In Section 2, we fix $z_1 = \check{z}_1$ near $z_1 = \delta^{\frac{1}{\eta}}$ and consider the sliced domain $\Omega_{\check{z}_1}$. Then, we construct a family of plurisubharmonic functions with maximal Hessian on each thin neighborhood of $b\Omega_{\check{z}_1}$ as in [1] for n=2 case, and then show a bumping theorem. In Section 3, we push out the boundary of the domain $\Omega_{\check{z}_1}$ as far as possible at each reference point $\check{z}_\delta \in b\Omega_{\check{z}_1}$. These are some of the main ingredients for a construction of f_δ in (1.4). Section 4 is devoted to proving Theorem 1.3.

Remark 1.5. Note that the bumping theorem or pushing out the domains are done for the domains with $\Delta_1(z_0) < \infty$ [2,3,5]. In this paper, the condition

 $\Delta_1(z_0) < \infty$ is replaced by the conditions $\Delta_{n-2}(z_0) < \infty$ and the compatibility of the (n-2)-eigenvalues.

2. Special coordinates and polydiscs

In the sequel, we assume that Ω is a smoothly bounded pseudoconvex domain in \mathbb{C}^n , $n \geq 3$, with smooth defining function r_0 and that there is a smooth 1-dimensional holomorphic curve V whose order of contact with $b\Omega$ at $z_0 \in b\Omega$ is equal to η and $\Delta_{n-2}(z_0) < \infty$. We also assume that the (n-2)-eigenvalues of the Levi-form are comparable in a neighborhood W of z_0 . We may assume that there are coordinate functions $\tilde{z} = (\tilde{z}_1, \dots, \tilde{z}_n)$ near z_0 such that $\tilde{z}(z_0) = 0$ and $|\partial r_0/\partial \tilde{z}_n| \geq c_0$ in W for some fixed constant $c_0 > 0$.

Using these \tilde{z} -coordinates, set

$$L_n = \frac{\partial}{\partial \tilde{z}_n}$$
 and
$$L_k = \frac{\partial}{\partial \tilde{z}_k} - \left(\frac{\partial r_0}{\partial \tilde{z}_n}\right)^{-1} \frac{\partial r_0}{\partial \tilde{z}_k} \frac{\partial}{\partial \tilde{z}_n}, \quad k = 1, \dots, n - 1,$$

set

$$c_{ij}(\tilde{z}) := \partial \overline{\partial} r_0(L_i, \overline{L}_j)(\tilde{z}), \quad i, j = 1, \dots, n-1,$$

and assume that the eigenvalues of the matrix $A := (c_{ij})_{2 \le i, j \le n-1}$ are comparable. Let m be the smallest integer bigger than or equal to $\Delta_{n-2}(z_0)$ ($\Delta_{n-2}(z_0)$ could be a rational number). Here we may also assume that $\eta \ge m$. As in Proposition 2.3 in [6], we can prove that there are coordinate functions $z = (z_1, \ldots, z_n)$ near $z_0 = 0$ such that the given smooth one dimensional variety V can be regarded as the z_1 -axis:

Proposition 2.1. Let Ω , r_0 , $z_0 \in b\Omega$ and $W \ni z_0$ be as above. There is a biholomorphism $\Phi_0 : \mathbb{C}^n \longrightarrow \mathbb{C}^n$, $\Phi_0(z) = \tilde{z}$, $\Phi_0(0) = z_0$ such that in terms of z coordinates, $r(z) := r_0 \circ \Phi_0(z)$ can be written as

(2.1)
$$r(z) = Rez_{n} + \sum_{\substack{j+k=\eta\\j,k>0}} a_{j,k} z_{1}^{j} \overline{z}_{1}^{k} + \sum_{\substack{|\alpha''+\beta''|\leq m\\|\alpha''|,|\beta''|>0}} b_{\alpha''\beta''} z^{\alpha''} \overline{z}^{\beta''} + \sum_{\substack{1\leq j+k\leq\eta\\1\leq |\alpha''+\beta''|\leq m}} c_{\alpha''\beta''}^{j,k} z_{1}^{j} \overline{z}_{1}^{k} z^{\alpha''} \overline{z}^{\beta''} + \mathcal{O}\left(E_{m,\eta}(z)\right),$$

where $E_{m,\eta}(z) = |z||z_n| + |z_1|^{\eta+1} + |z''|^{m+1}$, and r(z) satisfies (2.2) $c|t|^{\eta} \le |r(t,0,\ldots,0,0)| \le C|t|^{\eta}$

for some constants c, C > 0.

Remark 2.2. (1) Let $d_0(z_1) := \sum_{j+k=\eta} a_{j,k} z_1^j \overline{z}_1^k$ be the first sum in (2.1). Then it follows from (2.1) and (2.2) that

$$(2.3) |d_0(z_1)| \approx |r(z_1, 0')| \approx |z_1|^{\eta}.$$

(2) The coordinate change in Proposition 2.1 is about $z_0 = 0 \in b\Omega$, but not about arbitrary point $\tilde{z} \in W$.

In the rest of this section, we fix $\delta > 0$ and assume that $\check{z} = (\check{z}_1, \check{z}'', \check{z}_n) \in W$ satisfies

$$|\check{z}_1 - \delta^{\frac{1}{\eta}}| < \gamma \delta^{\frac{1}{\eta}}$$

for a sufficiently small $\gamma > 0$. Let us fix \check{z}_1 satisfying (2.4) and consider the \check{z}_1 -slice defined in (1.3). Then for each \check{z}' with $(\check{z}_1, \check{z}') \in W$, we can remove the pure terms in the z'' (or \bar{z}'') variables inductively in the Taylor series expansion of $r_{\check{z}_1} = r(\check{z}_1, \cdot)$ as in the proof of Proposition 1.1 in [1]:

Proposition 2.3. For each fixed $\check{z} = (\check{z}_1, \check{z}') \in W$, where \check{z}_1 satisfies (2.4), there exist numbers $d_{\alpha''}(\check{z})$, depending smoothly on \check{z} , such that in the new coordinates $\zeta = (\check{z}_1, \zeta')$ defined by

$$z = (z_1, \Phi_{\check{z}}(\zeta')) = (\check{z}_1, \check{z}'' + \zeta'', \check{z}_n + \Phi_n(\zeta')),$$

where

$$\Phi_n(\zeta') = \left(\frac{\partial r}{\partial \tilde{z}_n}(\check{z})\right)^{-1} \left(\frac{\zeta_n}{2} - \sum_{l=1}^m \sum_{|\alpha''|=l} d_{\alpha''}(\check{z}) \zeta^{\alpha''}\right),$$

and the function $\rho(\check{z}_1,\zeta'):=r\circ(\check{z}_1,\check{\Phi}_{\check{z}}(\zeta'))$ satisfies

$$(2.5) \quad \rho(\check{z}_1,\zeta') = r(\check{z}) + Re\zeta_n + \sum_{\substack{|\alpha'' + \beta''| \le m \\ |\alpha'' \cup \beta''| > 0}} c_{\alpha''\beta''}(\check{z})\zeta^{\alpha''}\overline{\zeta}^{\beta''} + \mathcal{O}\left(E(\check{z}_1,\zeta')\right),$$

where $E(\check{z}_1, \zeta') = |\zeta_n||\zeta| + |\check{z}_1|^{\eta+1} + |\zeta''|^{m+1}$.

Remark 2.4. (1) Set $2\kappa_0 := \max_{\alpha'',\beta''} |c_{\alpha''\beta''}(z_0)|$. Since $\Delta_{n-2}(z_0) \leq m$, we have $\kappa_0 > 0$. Therefore it follows that

(2.6)
$$\max_{\alpha'',\beta''} |c_{\alpha''\beta''}(\check{z})| \ge \kappa_0 > 0,$$

independent of \check{z} provided W is sufficiently small because $c_{\alpha''\beta''}(\check{z})$ are smooth in \check{z} .

(2) By setting $\zeta_1 = \check{z}_1$ and $\zeta = (\check{z}_1, \zeta')$, we may regard that $\Phi_{\check{z}} : \mathbb{C}^n \to \mathbb{C}^n$, that is,

$$\Phi_{\check{z}}(\zeta) = (\check{z}_1, z').$$

(3) For each $z=(z_1,z'',z_n)\in W$, define $\pi(z):=(z_1,z'',\pi_n(z))\in b\Omega$, where $\pi_n(z)$ is the projection onto $b\Omega$ along the z_n direction. For each \check{z}_1 satisfying (2.4), set $\check{z}=(\check{z}_1,0')$ and set $\check{z}=\pi(\check{z})=(\check{z}_1,0'',\pi_n(\check{z}))\in b\Omega$. Using a Taylor series in the variable z_n about $\pi_n(\check{z})$, we see that

$$r(\check{z}_1, 0') = 2Re\left[\frac{\partial r(\check{z})}{\partial z_n}[-\pi_n(\tilde{z})]\right] + \mathcal{O}(\pi_n(\tilde{z})^2).$$

Since $|\pi_n(\tilde{z})| \ll 1$ and $2|\frac{\partial r}{\partial z_n}| = 1 + \mathcal{O}(|z|) \geq \frac{1}{2}$ on W, it follows from (2.3) that $|\pi_n(\tilde{z})| \approx |r(\tilde{z}_1, 0')| \approx |d_0(\tilde{z}_1)| \approx |\check{z}_1|^{\eta}$.

For each small $\delta > 0$, set $\tilde{z}_{\delta} = (\delta^{\frac{1}{\eta}}, 0')$ (i.e., $\check{z}_1 = \delta^{\frac{1}{\eta}}$) and set

(2.7)
$$\check{z}_{\delta} := \pi(\tilde{z}_{\delta}) := (\delta^{\frac{1}{\eta}}, 0'', \pi_n(\tilde{z}_{\delta})) \in b\Omega.$$

For a sufficiently small b > 0, set $z_{\delta} := (\delta^{\frac{1}{\eta}}, 0'', \pi_n(\tilde{z}_{\delta}) - b\delta) \in \Omega$, and set

$$(2.8) C_b(z_0, \delta_0) := \{ z_\delta : 0 \le \delta \le \delta_0 \} \cup \{ z_0 \} \subset \Omega \cup \{ z_0 \},$$

where $\delta_0 > 0$ is a sufficiently small number such that $z_{\delta} \in W$ for all $0 \le \delta \le \delta_0$. We will use the methods developed in [4–6] on each domain $\Omega_{\tilde{z}_1}$ keeping track of the dependence of the \tilde{z}_1 variable. For each $\tilde{z} = (\tilde{z}_1, \tilde{z}') \in W$, set

(2.9)
$$C_{s_2}(\check{z}) = \max\{|c_{\alpha''\beta''}(\check{z})| : |\alpha'' + \beta''| = s_2\},\$$

where $c_{\alpha''\beta''}(\check{z})$ is defined in (2.5), and for each $\epsilon > 0$, define

(2.10)
$$\tau(\check{z}, \epsilon) = \min_{2 \le s_2 \le m} \{ (\epsilon / C_{s_2}(\check{z}))^{1/s_2} \}.$$

Note that $\tau(\check{z},\epsilon)$ is well defined by (2.6) and it follows from (2.9) and (2.10) that

$$\begin{split} \epsilon^{1/2} \lesssim \tau(\check{z},\epsilon) \lesssim \epsilon^{1/m}, \text{ and } \\ (\epsilon'/\epsilon)^{\frac{1}{2}} \tau(\check{z},\epsilon) \leq \tau(\check{z},\epsilon') \leq (\epsilon'/\epsilon)^{\frac{1}{m}} \tau(\check{z},\epsilon), \text{ if } \epsilon' < \epsilon. \end{split}$$

In the sequel, set $\check{\zeta} = (\check{z}_1, 0')$. Note that $\Phi_{\check{z}}(\check{\zeta}) = \check{z}$. For each c > 0 and $\epsilon > 0$, define

$$R_{c\epsilon}^{\delta}(\check{z}) = \{ \zeta : |\zeta_1 - \check{z}_1| < c\delta^{\frac{1}{\eta}}, \ |\zeta_k| < c\tau(\check{z}, \epsilon), \ k = 2, \dots, n-1, \ |\zeta_n| < c\epsilon \},$$
 and set

$$Q_{c\epsilon}^{\delta}(\check{z}) = \{ (\zeta_1, \Phi_{\check{z}}(\zeta')); (\zeta_1, \zeta') \in R_{c\epsilon}^{\delta}(\check{z}) \}.$$

Also, we set

$$(2.11) \ R'_{c\epsilon}(\check{z}) = \{(\check{z}_1,\zeta_2,\ldots,\zeta_n): |\zeta_k| < c\tau(\check{z},\epsilon), \ k=2,\ldots,n-1, \ |\zeta_n| < c\epsilon\},$$
 a polydisc in the ζ' variables, and

$$Q'_{c\epsilon}(\check{z}) = \{(\check{z}_1, \Phi_{\check{z}}(\zeta')) : (\check{z}_1, \zeta') \in R'_{c\epsilon}(\check{z})\}.$$

As in Proposition 1.7 in [1], there exists an independent constant C > 0 such that if $z = (\check{z}_1, z') \in Q'_{\epsilon}(\check{z})$, then

$$Q'_{\epsilon}(z) \subset Q'_{C\epsilon}(\check{z}), \text{ and } Q'_{\epsilon}(\check{z}) \subset Q'_{C\epsilon}(z).$$

In view of (2.6), we note that the same inclusion relations hold if we fix \check{z}' and vary \check{z}_1 . Thus, we obtain that

$$Q^\delta_\epsilon(z) \subset Q^\delta_{C\epsilon}(\check{z}), \ \ \text{and} \ \ Q^\delta_\epsilon(\check{z}) \subset Q^\delta_{C\epsilon}(z), \ \ \text{if} \ \ z \in Q^\delta_\epsilon(\check{z}).$$

Again, by (2.6), we also have the following equivalence relations for $\tau(z,\epsilon)$ (Proposition 2.14 in [6]).

Proposition 2.5. Assume $z = (\check{z}_1, z') \in Q_{c\epsilon}^{\delta}(\check{z})$. Then

(2.12)
$$\tau(z,\epsilon) \approx \tau(\check{z},\epsilon)$$

for all sufficiently small c > 0, independent of $\delta > 0$ and $\epsilon > 0$.

In the sequel, set $D_k = \frac{\partial}{\partial \zeta_k}$ or $\frac{\partial}{\partial \overline{\zeta}_k}$, $1 \le k \le n$, and set $\tau_1 = \delta^{\frac{1}{\eta}}$. Recall that $\check{\zeta} = (\check{z}_1, 0')$. Combining (2.4), (2.9) and (2.10), the error term $E(\check{z}_1, \zeta')$ in (2.5) satisfies

(2.13)
$$|D_1^{l_1}E(\check{\zeta})| \lesssim \tau_1^{\eta+1-l_1} = \delta \tau_1^{-l_1+1}, \text{ and } D_1^{l_1}D^{\nu''}E(\check{\zeta}) = 0, \text{ if } 0 < |\nu''| \le m.$$

Proposition 2.6. Assume $\check{z}=(\check{z}_1,\check{z}')\in W$ satisfies (2.4) and assume that $|r(\check{z})|\lesssim \delta$. For each l_1 , and for each multi index $\nu''=(\nu_2,\ldots,\nu_{n-1})$ with $0<|\nu''|\leq m$, we have

(2.14)
$$|D_1^{l_1}\rho(\check{\zeta})| \lesssim \delta \tau_1^{-l_1}, \quad and \quad |D^{\nu''}\rho(\check{\zeta})| \lesssim \epsilon \tau(\check{z}, \epsilon)^{-|\nu''|}.$$

Proof. From (2.1), (2.2) and (2.13), it follows that

$$|D_1^{l_1}\rho(\check{\zeta})| = |D_1^{l_1}r(\check{z})| \lesssim \delta\tau_1^{-l_1},$$

and the second estimates follows from (2.5), (2.9), (2.10) and (2.13)

For each fixed $\delta > 0$, set $\check{z}_1 = \delta^{1/\eta}$ and consider $\delta^{1/\eta}$ -slice of Ω , $\Omega_{\delta^{1/\eta}}$. For convenience of notation, set $\Omega_{\delta} = \Omega_{\delta^{1/\eta}}$. Then Ω_{δ} is a smoothly bounded pseudoconvex domain in \mathbb{C}^{n-1} with comparable Levi-form near $\check{z}_{\delta} \in b\Omega_{\delta}$ where $\check{z}_{\delta} = \pi(\delta^{\frac{1}{\eta}}, 0')$ is defined in (2.7). Since $\Delta_{n-2}(\check{z}_{\delta}) \leq m$, and the Levi-forms are comparable, it follows that $\Delta_1(\check{z}_{\delta}) \leq m$ (Proposition 2.12 in [6]).

To push out the domain Ω_{δ} as far as possible at the reference point $\check{z}_{\delta} \in b\Omega_{\delta} \cap W$, we need to construct bounded plurisubharmonic functions with maximal Hessian in a thin strip neighborhood of $b\Omega_{\delta}$ as in Theorem 3.1 in [1]. Set $r_{\delta}(z') = r(\delta^{\frac{1}{\eta}}, z')$, and for each small $\epsilon > 0$, define

$$\Omega_{\delta}^{\epsilon} = \{ (\delta^{\frac{1}{\eta}}, z') : r_{\delta}(z') < \epsilon \},$$

$$S_{\delta}(\epsilon) = \{ (\delta^{\frac{1}{\eta}}, z') : -\epsilon < r_{\delta}(z') < \epsilon \}, \text{ and}$$

$$S_{\delta}^{-}(\epsilon) = \{ (\delta^{\frac{1}{\eta}}, z') : -\epsilon < r_{\delta}(z') \le 0 \}.$$

Using the estimates (2.12) and (2.14), we can prove the following theorem as in the proof of Theorem 3.1 in [5]:

Proposition 2.7. For all small $\epsilon > 0$, there is a plurisubharmonic function $\lambda_{\delta}^{\epsilon} \in C^{\infty}(W \cap \Omega_{\delta})$ with the following properties:

(i)
$$|\lambda_{\delta}^{\epsilon}(z)| \leq 1, z = (\delta^{\frac{1}{\eta}}, z') \in \Omega_{\delta} \cap W,$$

(ii) for all
$$L' = \sum_{k=2}^{n} a_k L_k$$
 at $z = (\delta^{\frac{1}{\eta}}, z') \in S_{\delta}^{-}(\epsilon) \cap W$,

$$\partial \overline{\partial} \lambda_{\delta}^{\epsilon}(L', \overline{L}')(z) \approx \tau(z, \epsilon)^{-2} \sum_{k=2}^{n-1} |a_k|^2 + \epsilon^{-2} |a_n|^2, \text{ and}$$

(iii) if $\Phi_{\tilde{z}}(\zeta')$ is the map associated with a given $\check{z} = (\delta^{\frac{1}{\eta}}, \check{z}') \in S_{\delta}(\epsilon) \cap W$, then

$$|D^{\alpha'}(\lambda_{\delta}^{\epsilon} \circ \Phi_{\check{z}}(\zeta'))| \le C'_{\alpha} \epsilon^{-\alpha_n} \tau(\check{z}, \epsilon)^{-|\alpha''|}$$

holds for all $\zeta' \in R'_{\epsilon}(\check{z})$ where $\alpha' = (\alpha_2, \ldots, \alpha_n)$, and $\alpha'' = (\alpha_2, \ldots, \alpha_{n-1})$, and $R'_{\epsilon}(\check{z})$ is defined in (2.11).

Remark 2.8. In Theorem 2.3 of [2], the author proved a bumping theorem near a point $z_0 \in \Omega$ of finite 1-type. All we need for that theorem is the existence of a family of plurisubharmonic functions with maximal Hessian on each thin strip $S_{\delta}(\epsilon)$ as stated above in Proposition 2.7. Since $\Delta_{n-2}(\check{z}_{\delta}) \leq m$ and the Levi-form is comparable, it follows that $\Delta_1(\check{z}_{\delta}) \leq m$ (Proposition 2.12 in [6]).

Recall that $\check{z}_{\delta} = \pi(\delta^{\frac{1}{\eta}}, 0') \in b\Omega_{\delta}$ defined in (2.7). In the sequel, for each $\check{z} = (\check{z}_1, \check{z}')$, set $B'_c(\check{z}) = \{(\check{z}_1, z') : |z' - \check{z}'| < c\}, c > 0$. Using the family of plurisubharmonic functions $\lambda^{\epsilon}_{\delta}$ in Proposition 2.7, we have the following bumping theorem for each Ω_{δ} as in [2]:

Theorem 2.9. Let $V \subset\subset W$ be a small neighborhood of $z_0 \in b\Omega$. There exists an independent constant $r_0 > 0$ such that for each $\check{z}_{\delta} \in \overline{V} \cap b\Omega_{\delta}$, we have $B'_{2r_0}(\check{z}_{\delta}) \subset\subset W \cap \{(\delta^{\frac{1}{\eta}}, z') \in \mathbb{C}^n\}$, and there is a smooth 1-parameter family of pseudoconvex domains Ω^t_{δ} , $0 \leq t < t_0$, called the bumping family of Ω_{δ} with front $B'_{2r_0}(\check{z}_{\delta})$, each defined by $\Omega^t_{\delta} = \{(\delta^{\frac{1}{\eta}}, z') : r^t_{\delta}(z') < 0\}$ where $r^t_{\delta}(z') = r^t(\delta, z')$ has the following properties;

- (1) $r_{\delta}^{t}(z')$ is smooth in $z = (\delta, z') \in W$ and in t for $0 \le t < t_0$.
- (2) $r_{\delta}^{t}(z') = r_{\delta}(z')$ for $(\delta^{\frac{1}{\eta}}, z') \notin B'_{2r_{0}}(\check{z}_{\delta})$.
- (3) $\frac{\partial r_{\delta}^t}{\partial t}(z') \leq 0$.
- (4) $r_{\delta}^{0}(z') = r_{\delta}(z') = r(\delta^{\frac{1}{\eta}}, z').$
- (5) for $z = (\delta^{\frac{1}{\eta}}, z') \in B'_{2r_0}(\check{z}_{\delta}), \frac{\partial r_{\delta}^t}{\partial t}(z') < 0.$

3. A construction of special functions

In this section, we construct a family of uniformly bounded holomorphic functions $\{f_\delta\}_{\delta>0}$ with large derivatives in the z_n -direction along the curve $C_b(z_0,\delta_0)\subset\Omega$ defined in (2.8). Let us fix $\delta>0$ for a while and concentrate on the point $\check{z}_\delta\in b\Omega_\delta$ defined in (2.7) where $\Omega_\delta:=\Omega_{\delta^{\frac{1}{\eta}}}=\{(\delta^{\frac{1}{\eta}},z'):(\delta^{\frac{1}{\eta}},z')\in\Omega\}$. For a construction of $\{f_\delta\}_{\delta>0}$, we use "Bumping theorem" in Theorem 2.9 as well as pushing out $b\Omega_\delta$ as far as possible at each reference point \check{z}_δ .

Recall the function $\Phi_{\check{z}_{\delta}}(\zeta) = (\delta^{\frac{1}{\eta}}, \Phi_{\check{z}_{\delta}}(\zeta'))$ defined in Proposition 2.3. Set $\widetilde{W}'_{\delta} = W \cap \{(\delta^{1/\eta}, z') : z' \in \mathbb{C}^{n-1}\}, \Omega'_{\delta} = (\Phi_{\check{z}_{\delta}})^{-1}(\Omega_{\delta})$ and set

$$W_{\delta}' = (\Phi_{\check{z}_{\delta}})^{-1}(\widetilde{W}_{\delta}').$$

Then Ω'_{δ} is a smoothly bounded pseudoconvex domain in \mathbb{C}^{n-1} and the (n-2)-eigenvalues are uniformly comparable, and the estimate (2.6) holds uniformly, independent of $\delta > 0$. We want to construct a domain $D'_{\delta} \subset \mathbb{C}^{n-1}$ which

contains Ω'_{δ} such that the boundary of D'_{δ} is pushed out essentially as far as possible near $\zeta^{\delta} = (\delta^{\frac{1}{\eta}}, 0') = (\Phi_{\check{z}_{\delta}})^{-1}(\check{z}_{\delta}) \in b\Omega'_{\delta}$, so that bD'_{δ} is pseudoconvex. Set

(3.1)
$$J_{\delta}(\zeta') = \left(\delta^2 + |\zeta_n|^2 + \sum_{2 \le s_2 \le m} C_{s_2}(\tilde{z}_{\delta})^2 |\zeta''|^{2s_2}\right)^{\frac{1}{2}},$$

where $C_{s_2}(\check{z}_{\delta})$ is defined in (2.9), and let $r_0 > 0$ be the constant in Theorem 2.9. Note that $B'_{2r_0} \subset W'_{\delta}$. For each small e > 0, set

$$W'_{\delta,e} = \{ (\delta^{1/\eta}, \zeta') \in W'_{\delta} : \rho(\delta^{\frac{1}{\eta}}, \zeta') < eJ_{\delta}(\zeta') \} \cap B'_{r_0}(\check{z}_{\delta}).$$

If we use the family $\{\lambda_{\delta}^{\epsilon}\}$ constructed in Proposition 2.7, and follow the methods in Section 4 of [1], we can show that $W'_{\delta,e}$ is the maximally pushed out domain of Ω'_{δ} near ζ^{δ} such that

$$bW'_{\delta,e} := \{ (\delta^{1/\eta}, \zeta') \in W'_{\delta} : \rho(\delta^{\frac{1}{\eta}}, \zeta') = eJ_{\delta}(\zeta') \} \cap B'_{r_0}(\check{z}_{\delta})$$

is pseudoconvex for all sufficiently small e > 0.

To connect the pushed out part $W'_{\delta,e}$ and Ω'_{δ} , we use the bumping family $\{\Omega^t_{\delta}\}$ with front $B'_{2r_0}(\check{z}_{\delta})$ as in Theorem 2.9. Set

$$D'_{t,\delta,e} = (\Omega^t_{\delta} \setminus B'_{r_0}(\check{z}_{\delta})) \cup (W'_{\delta,e} \cap \Omega^t_{\delta}).$$

Then $D'_{t,\delta,e}$ becomes a pseudoconvex domain which is pushed out near $\zeta^{\delta} = (\Phi_{\tilde{z}_{\delta}})^{-1}(\tilde{z}_{\delta})$ provided t > 0 and e > 0 are sufficiently small. In the sequel, we fix these $t = t_0$ and $e = e_0$ and set $D'_{\delta} := D'_{t_0,\delta,e_0}$. Note that these choices of t_0 and $e_0 > 0$ are independent of $\delta > 0$. If we use the methods in Section 6 of [1] (or Section 3 of [4]), we see that there exists a $L^2(D'_{\delta})$ holomorphic function f_{δ} satisfying

$$\left| \frac{\partial f_{\delta}}{\partial \zeta_n}(z_{\delta}) \right| \ge \frac{1}{\delta},$$

independent of δ , where $z_{\delta} = (\delta^{\frac{1}{\eta}}, 0'', \pi_n(\tilde{z}_{\delta}) - b\delta) \in C_b(z_0, \delta_0)$, and where b > 0 is taken so that $C_b(z_0, \delta_0) \subset \Omega$. Note that f_{δ} is independent of z_1 variable. We will show that f_{δ} is holomorphic in a domain including the z_1 direction near $z_1 = \delta^{\frac{1}{\eta}}$.

Recall that Ω'_{δ} or D'_{δ} can be regarded as domains in \mathbb{C}^{n-1} by fixing $\zeta_1 = \delta^{\frac{1}{\eta}}$. In terms of the special coordinates $\zeta = (\check{z}_1, \zeta')$ defined in Proposition 2.3, set

$$P_{c_1,\delta}(\check{z}_{\delta}) := \{ \zeta : |\zeta_1 - \delta^{\frac{1}{\eta}}| < c_1 \delta^{\frac{1}{\eta}}, \ |\zeta_k| < \frac{r_0}{2n}, \ k = 2, \dots, n \},$$

where r_0 is the constant fixed in Theorem 2.9, and set

$$\Omega_{c_1,\delta}(\check{z}_{\delta}) = P_{c_1,\delta}(\check{z}_{\delta}) \cap \{\zeta : \rho(\zeta) < 0\} \subset \Omega.$$

Also, for each $\delta > 0$, e > 0, and $c_1 > 0$, set

$$\Omega_{c_1,\delta}^e(\check{z}_\delta) = P_{c_1,\delta}(\check{z}_\delta) \cap \{(\zeta_1,\zeta') : \rho(\delta^{\frac{1}{\eta}},\zeta') < eJ_\delta(\zeta')\} \subset \mathbb{C}^n.$$

Then $\Omega_{c_1,\delta}^e(\check{z}_\delta)$ is obtained by moving $W'_{\delta,e}$ along the ζ_1 direction.

Lemma 3.1. For sufficiently small $c_1 > 0$, we have $\Omega_{c_1,\delta}(\check{z}_{\delta}) \subset\subset \Omega_{c_1,\delta}^{e/2}(\check{z}_{\delta})$, or equivalently,

$$(3.3) \rho(\delta^{\frac{1}{\eta}}, \zeta') - \rho(\zeta) < \frac{e}{2} J_{\delta}(\zeta') for \zeta = (\zeta_1, \zeta') \in \Omega_{c_1, \delta}(\check{z}_{\delta}).$$

Proof. Assume $\zeta = (\zeta_1, \zeta') \in \Omega_{c_1, \delta}(\check{z}_{\delta})$. Then

(3.4)
$$|\rho(\zeta) - \rho(\delta^{\frac{1}{\eta}}, \zeta')| \le c_1 \delta^{\frac{1}{\eta}} \max_{|\tilde{\zeta}_1 - \delta^{\frac{1}{\eta}}| < c_1 \delta^{\frac{1}{\eta}}} |D_1 \rho(\tilde{\zeta}_1, \zeta')|.$$

Note that $\Phi_{\check{z}_{\delta}}$ is independent of $\zeta_1 = z_1$. Since $\rho(\zeta) = r \circ (\zeta_1, \Phi_{\check{z}_{\delta}}(\zeta'))$, it follows from (2.5), (2.14), (3.1), and a Taylor series that

$$(3.5) |D_1 \rho(\tilde{\zeta}_1, \zeta')| \lesssim \delta^{1 - \frac{1}{\eta}} \lesssim \delta^{-\frac{1}{\eta}} J_{\delta}(\zeta').$$

Combining (3.4) and (3.5), we obtain (3.3) provided $c_1 > 0$ is sufficiently small.

If we use the standard inequality:

$$ab \le \theta a^p + \theta^{-q/p} b^q, \quad \frac{1}{p} + \frac{1}{q} = 1 \text{ for all } \theta, a, b > 0,$$

one obtains that

$$(3.6) (a+b)^s \le 2a^s + (s!)^{s-1}b^s, \ s \ge 1.$$

Since f_{δ} is independent of ζ_1 , we see that f_{δ} is holomorphic on $\Omega^e_{c_1,\delta}(\check{z}_{\delta})$. We will show that f_{δ} is bounded uniformly on $\overline{\Omega}^{e/4}_{a_1,\delta}$ for some $a_1, 0 < a_1 < c_1 \leq \frac{r_0}{2n}$, to be determined. For each $q = (q_1, q') \in \overline{\Omega}^{e/4}_{a_1,\delta}$, set $\tau_1 = \delta^{\frac{1}{\eta}}$, $\tau_k = \tau(\check{z}_{\delta}, J_{\delta}(q'))$, $2 \leq k \leq n-1$, $\tau_n = J_{\delta}(q')$, and define a non-isotropic polydisc $Q^{\delta}_{a_1}(q)$ by

$$Q_{a_1}^{\delta}(q) := \{ \zeta : |\zeta_k - q_k| < a_1 \tau_k, \ 1 \le k \le n \}.$$

Lemma 3.2. There is an independent constant $0 < a_1 < c_1$ such that

(3.7)
$$Q_{a_1}^{\delta}(q) \subset \Omega_{a_1,\delta}^e \quad for \quad q = (q_1, q') \in \overline{\Omega}_{a_1,\delta}^{e/4}.$$

Proof. Assume $\zeta \in Q_{a_1}^{\delta}(q)$. Then, it follows from (2.9), and (2.10) that

(3.8)
$$C_{s_2}(\check{z}_{\delta})^2 |\zeta'' - q''|^{2s_2} \le (n-2)^{s_2} a_1^{2s_2} C_{s_2}(\check{z}_{\delta})^2 \tau(\check{z}_{\delta}, J_{\delta}(q'))^{2s_2}$$
$$\le (n-2)^{s_2} a_1^{2s_2} J_{\delta}(q')^2,$$

and $|\zeta_n - q_n|^2 \le a_1^2 J_\delta(q')^2$. Thus, it follows from (3.1), (3.6), and (3.8) that

$$J_{\delta}(q')^{2} = \delta^{2} + |q_{n}|^{2} + \sum_{s_{2}=2}^{m} C_{s_{2}}(\check{z}_{\delta})^{2}|q''|^{2s_{2}}$$

$$\leq \delta^{2} + 2|\zeta_{n}|^{2} + 2|\zeta_{n} - q_{n}|^{2}$$

$$+ \sum_{s_{2}=2}^{m} C_{s_{2}}(\check{z}_{\delta})^{2} \left(2|\zeta''|^{2s_{2}} + ((2s_{2})!)^{2s_{2}-1}|\zeta'' - q''|^{2s_{2}}\right)$$

$$\leq 2J_{\delta}(\zeta')^{2} + \left[2mn^{m}((2m)!)^{2m-1}a_{1}^{2}\right]J_{\delta}(q')^{2}.$$

If we take $a_1 > 0$ so that $2mn^m((2m)!)^{2m-1}a_1^2 \leq \frac{1}{2}$, we obtain that $J_{\delta}(q') \leq 2J_{\delta}(\zeta')$. By the same argument, we have $J_{\delta}(\zeta') \leq 2J_{\delta}(q')$. Therefore we obtain that

(3.9)
$$\frac{1}{2}J_{\delta}(q') \le J_{\delta}(\zeta') \le 2J_{\delta}(q') \text{ for } \zeta \in Q_{a_1}^{\delta}(q).$$

Assume $q=(q_1,q')\in \overline{\Omega}_{a_1,\delta}^{e/4}$ and $\zeta\in Q_{a_1}^{\delta}(q)$. Then, $\rho(\delta^{\frac{1}{\eta}},q')\leq \frac{e}{4}J_{\delta}(q')$. Thus, we have

(3.10)
$$\rho(\delta^{\frac{1}{\eta}}, \zeta') \leq \frac{e}{4} J_{\delta}(q') + |\nabla' \rho(\delta^{\frac{1}{\eta}}, \tilde{\zeta}') \cdot (\zeta' - q')|$$

for some $(\delta^{\frac{1}{\eta}}, \tilde{\zeta}') \in Q_{a_1}^{\delta}(q)$ where ∇' denotes the gradient of the ζ' variables. From (2.9), (2.10), and (2.14) (with ϵ replaced by $J_{\delta}(q')$), we obtain that

$$(3.11) |D_k \rho(\delta^{\frac{1}{\eta}}, \tilde{\zeta}')| \lesssim J_{\delta}(q') \tau(\check{z}_{\delta}, J_{\delta}(q'))^{-1}, \ (\delta^{\frac{1}{\eta}}, \tilde{\zeta}') \in Q_{a_1}^{\delta}(q),$$

for $2 \le k \le n-1$, and $|D_n \rho| \lesssim 1$. Combining (3.9)–(3.11), we obtain that

$$\rho(\delta^{\frac{1}{\eta}}, \zeta') \le \frac{e}{2} J_{\delta}(\zeta') + C_2 a_1 J_{\delta}(q') < e J_{\delta}(\zeta'),$$

if we take $a_1 > 0$ so that $4C_2a_1 < e$. Therefore, $\zeta \in \Omega_{a_1,\delta}^e$ proving (3.7).

Remark 3.3. In the above discussion, e > 0 is any number such that $0 < e \le e_0$. Thus, in particular, we can fix $e = e_0$ where e_0 is fixed before (3.2).

Theorem 3.4. f_{δ} is a bounded holomorphic function in $\overline{\Omega}_{a_1,\delta}^{e/4}$ and satisfies

(3.12)
$$\left| \frac{\partial f_{\delta}}{\partial \zeta_n}(z_{\delta}) \right| \ge \frac{1}{\delta}, \ z_{\delta} \in C_b(z_0, \delta_0),$$

independent of δ .

Proof. By (3.2) and (3.3), we already know that there is a L^2 holomorphic function f_{δ} on $\Omega_{c_1,\delta}^e(\check{z}_{\delta})$ satisfying the estimate (3.12). We only need to show that f_{δ} is bounded in $\overline{\Omega}_{a_1,\delta}^{e/4}$. Assume $q \in \overline{\Omega}_{a_1,\delta}^{e/4} \subset \Omega_{c_1,\delta}^e$, where $0 < a_1 < c_1$. Then $Q_{a_1}^{\delta}(q) \subset \Omega_{a_1,\delta}^e \subset \Omega_{c_1,\delta}^e$ by Lemma 3.2. Now if we use the mean value theorem on polydisc $Q_{a_1}^{\delta}(q) \subset \Omega_{c_1,\delta}^e$ and the fact that $f_{\delta} \in L^2(\Omega_{c_1,\delta}^e)$ is holomorphic, we will get the boundedness of f_{δ} on $\overline{\Omega}_{a_1,\delta}^{e/4}$.

4. Proof of Theorem 1.3

The proof is similar to that in [7]. We will sketch the proof briefly here. Let $c_1 > 0$, and $a_1 > 0$ be the constants fixed in Lemma 3.1 and Lemma 3.2 respectively. We may assume that $0 < 2b < a_1 \le c_1$. For each $\delta > 0$, let f_{δ} be the function defined in Theorem 3.4. Therefore, f_{δ} is L^2 holomorphic on $\Omega_{c_1,\delta}^e(\check{z}_{\delta})$, bounded on $\overline{\Omega}_{a_1,\delta}^{e/4}$, independent of ζ_1 variable, and satisfies the estimates in (3.12). Set

$$g_{\delta} = \phi \left(\frac{|\zeta_1 - \delta^{\frac{1}{\eta}}|}{c_1 \delta^{\frac{1}{\eta}}} \right) \phi \left(\frac{|\zeta|}{a_1} \right) \phi \left(\frac{|\zeta_3|}{a_1} \right) \cdots \phi \left(\frac{|\zeta_n|}{a_1} \right) f_{\delta}(0, \zeta'),$$

where

$$\phi(t) = \begin{cases} 1, & |t| \le \frac{1}{2}, \\ 0, & |t| \ge \frac{3}{4}. \end{cases}$$

Note that

$$\|\overline{\partial}g_{\delta}\|_{L^{\infty}(\Omega)} \lesssim \delta^{-\frac{1}{\eta}}.$$

Assume that $u_{\delta} \in L^2(\Omega) \cap \Lambda_{\kappa}(U \cap \Omega)$ solves $\overline{\partial} u_{\delta} = \overline{\partial} g_{\delta}$ on Ω as in Theorem 1.3. Then we have

$$\|u\|_{\Lambda_{\kappa}(U\cap\overline{\Omega})} \le C \|\overline{\partial}g_{\delta}\|_{L_{\infty}(\Omega)} \lesssim \delta^{-\frac{1}{\eta}}.$$

Set $h_{\delta} = u_{\delta} - g_{\delta}$. Then h_{δ} is holomorphic in Ω . Set

$$q_1^{\delta}(\theta) = (\delta^{1/\eta} + \frac{4}{5}c_1\delta^{1/\eta}e^{i\theta}, 0, \dots, 0, -\frac{b\delta}{2}), \text{ and}$$

$$q_2^{\delta}(\theta) = (\delta^{1/\eta} + \frac{4}{5}c_1\delta^{1/\eta}e^{i\theta}, 0, \dots, 0, -b\delta), \ \theta \in \mathbb{R}.$$

Note that $g_{\delta}(q_1^{\delta}(\theta)) = g_{\delta}(q_2^{\delta}(\theta)) = 0$. From (1.2) and (4.1) we obtain that

$$(4.2) H_{\delta} := \left| \frac{1}{2\pi} \int_{0}^{2\pi} \left[u_{\delta}(q_{1}^{\delta}(\theta)) - u_{\delta}(q_{2}^{\delta}(\theta)) \right] d\theta \right| \lesssim \delta^{\kappa} \|\overline{\partial}g_{\delta}\|_{L^{\infty}} \lesssim \delta^{\kappa - \frac{1}{\eta}}.$$

For the lower bounds of H_{δ} , set $\zeta'_{\delta} = (0'', -\frac{b\delta}{2})$, $\tilde{\zeta}'_{\delta} = (0'', -b\delta)$, $\zeta_{\delta} = (\delta^{\frac{1}{\eta}}, \zeta'_{\delta})$, and $\tilde{\zeta}_{\delta} = (\delta^{\frac{1}{\eta}}, \tilde{\zeta}'_{\delta})$. Then a Taylor's series of f_{δ} in ζ_n variable shows that

$$f_{\delta}(0'', \zeta_n) = f_{\delta}(\zeta_{\delta}') + \frac{\partial f_{\delta}}{\partial \zeta_n}(\zeta_{\delta}')(\zeta_n + \frac{b\delta}{2}) + \mathcal{O}\left(\left|\zeta_n + \frac{b\delta}{2}\right|^2\right).$$

Especially, when $\zeta_n = -b\delta$, we have

$$\left| f_{\delta}(\tilde{\zeta}'_{\delta}) - f_{\delta}(\zeta'_{\delta}) \right| = \left| \frac{\partial f_{\delta}}{\partial \zeta_n}(\zeta'_{\delta})(-\frac{b\delta}{2}) + \mathcal{O}(\delta^2) \right| \gtrsim 1,$$

because $\left|\frac{\partial f_{\delta}}{\partial \zeta_n}(\zeta_{\delta}')\right| \geq \frac{1}{\delta}$ by (3.12).

Note that $g_{\delta}(\zeta_{\delta}) = f(\zeta'_{\delta})$ and $g_{\delta}(\tilde{\zeta}_{\delta}) = f(\tilde{\zeta}'_{\delta})$ because $0 < 2b < a_1 \le c_1$. Therefore, it follows from (1.2), (4.1), (4.3), and the Mean Value Property that

$$(4.4) H_{\delta} = \left| \frac{1}{2\pi} \int_{0}^{2\pi} \left[h_{\delta}(q_{1}^{\delta}(\theta)) - h_{\delta}(q_{2}^{\delta}(\theta)) \right] d\theta \right| = \left| h_{\delta}(\zeta_{\delta}) - h_{\delta}(\tilde{\zeta}_{\delta}) \right|$$

$$\geq \left| f_{\delta}(\tilde{\zeta}_{\delta}') - f_{\delta}(\zeta_{\delta}') \right| - \left| u_{\delta}(\tilde{\zeta}_{\delta}) - u_{\delta}(\zeta_{\delta}) \right| \geq c_{0} - C_{0} \delta^{\kappa - \frac{1}{\eta}}$$

for some constants $0 < c_0 < 1 < C_0$. If we combine (4.2) and (4.4), we obtain that

$$(4.5) 1 \lesssim \delta^{\kappa - \frac{1}{\eta}}.$$

Now, if we assume $\kappa > \frac{1}{\eta}$ and take $\delta \to 0$, then (4.5) will be a contradiction. Therefore, $\kappa \leq \frac{1}{\eta}$.

References

- [1] D. W. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), no. 3, 429–466. https://doi.org/10.1007/BF01215657
- [2] S. Cho, Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Math. Z. 211 (1992), no. 1, 105–119. https://doi.org/10.1007/BF02571421
- [3] _____, A lower bound on the Kobayashi metric near a point of finite type in Cⁿ, J. Geom. Anal. 2 (1992), no. 4, 317–325. https://doi.org/10.1007/BF02934584
- [4] ______, Estimates of invariant metrics on pseudoconvex domains with comparable Levi form, J. Math. Kyoto Univ. 42 (2002), no. 2, 337-349. https://doi.org/10.1215/kjm/ 1250283875
- [5] ______, Boundary behavior of the Bergman kernel function on pseudoconvex domains with comparable Levi form, J. Math. Anal. Appl. 283 (2003), no. 2, 386-397. https://doi.org/10.1016/S0022-247X(03)00160-4
- [6] ______, Estimates on the Bergman kernels on pseudoconvex domains with comparable Levi-forms, Complex Var. Elliptic Equ. 64 (2019), no. 10, 1703-1732. https://doi.org/ 10.1080/17476933.2018.1549037
- [7] S. Cho and Y. H. You, On sharp Hölder estimates of the Cauchy-Riemann equation on pseudoconvex domains in Cⁿ with one degenerate eigenvalue, Abstr. Appl. Anal. 2015 (2015), Art. ID 731068, 6 pp. https://doi.org/10.1155/2015/731068
- [8] J. P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math.
 (2) 115 (1982), no. 3, 615-637. https://doi.org/10.2307/2007015
- [9] K. Diederich, B. Fischer, and J. E. Fornæss, Hölder estimates on convex domains of finite type, Math. Z. 232 (1999), no. 1, 43-61. https://doi.org/10.1007/PL00004758
- [10] N. Kerzman, Hölder and L^p estimates for solutions of $\bar{\partial}u=f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301-379. https://doi.org/10.1002/cpa.3160240303
- [11] S. G. Krantz, Characterizations of various domains of holomorphy via Θ estimates and applications to a problem of Kohn, Illinois J. Math. 23 (1979), no. 2, 267-285. http://projecteuclid.org/euclid.ijm/1256048239
- [12] J. D. McNeal, On sharp Hölder estimates for the solutions of the Θ-equations, in Several complex variables and complex geometry, Part 3 (Santa Cruz, CA, 1989), 277–285, Proc. Sympos. Pure Math., 52, Part 3, Amer. Math. Soc., Providence, RI, 1991.
- [13] R. M. Range, On Hölder estimates for $\bar{\partial}u=f$ on weakly pseudoconvex domains, in Several Complex Variables (Cortona, 1976/1977), 247–267, Scuola Norm. Sup. Pisa, Pisa, 1978.

[14] Y. You, Necessary conditions for Hölder regularity gain of $\overline{\partial}$ equation in \mathbb{C}^3 , arXiv. 1504.05432. Ph. D. thesis, Purdue University, West Lafayette, 2011.

SANGHYUN CHO
DEPARTMENT OF MATHEMATICS
SOGANG UNIVERSITY
SEOUL 04107, KOREA
Email address: shcho@sogang.ac.kr