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A BOUND ON HOLDER REGULARITY FOR 3-EQUATION
ON PSEUDOCONVEX DOMAINS IN C* WITH SOME
COMPARABLE EIGENVALUES OF THE LEVI-FORM

SANGHYUN CHO

ABSTRACT. Let Q be a smoothly bounded pseudoconvex domain in C™
and assume that the (n — 2)-eigenvalues of the Levi-form are comparable
in a neighborhood of zg € bS). Also, assume that there is a smooth 1-
dimensional analytic variety V whose order of contact with b2 at zg is
equal ton and A, _2(z0) < co. We show that the maximal gain in Holder
regularity for solutions of the d-equation is at most %

1. Introduction

Let Q be a bounded pseudoconvex domain in C™ and assume that zy € bS.
Suppose that there exist a neighborhood U of zg and a constant C' > 0 so that
for each v € L% (Q) with dv = 0, there is a u € L%(Q) N A.(U N Q) such that
Ou = v in Q and

(1.1) HuHAK(Uﬁﬁ) < Clvllzw@),

for some k > 0, where A, (S) denotes the Holder space of order x on S. In this
event, we say the Holder estimates of order x > 0 for d-equation hold on U.

When Q is a bounded strongly pseudoconvex domain in C”, (1.1) holds for
k = % [10]. For weakly pseudoconvex domain in C", however, (1.1) is known
only for some special cases. Namely, pseudoconvex domains of finite type in
C? [12,13], convex finite type domains in C™ [9], etc. Therefore, the Holder
estimate for general pseudocovex domains in C™ is one of the big questions in
several complex variables.

Meanwhile, it is of great interest to find a necessary condition or optimal
possible gain of £ > 0in (1.1). Normally this question depends on the boundary
geometry of 2 near zy € bS2. Several authors have obtained necessary conditions
for Holder regularity of 0 on restricted classes of domains [11-14].

Let Ay(z) denote the D’Angelo’s finite g-type at z, and let Afeg(z) be
the “regular finite g-type”, which is defined by the maximum order of contact
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of non-singular ¢-dimensional varieties [8]. Note that A,(z) < A,(z) (and
Afe9(z) < Aled(2)) if p > q, AF9(z) < Ay(2), and AF9(2) is a positive
integer.

When A,,_1(20) := my,_1 < 0o, Krantz [11] showed that x < ——. Krantz’s

Mp—1"

result is sharp for Q C C2, and when « is a (0,n — 1)-form. In [12], McNeal
proved sharp Holder estimates for (0,1)-form o under the condition that €
has a holomorphic support function at zg € . Note that the existence of
holomorphic support function is satisfied for restricted domains and it is often
the first step to prove the Holder estimates for the d-equation [13]. In the rest
of this section, we let 2 be a smoothly bounded pseudoconvex domain in C"
with smooth defining function r, that is, Q = {z : r(z) < 0} € C".

Definition 1.1. Let A\1(2), ..., An—1(2) be the nonnegative eigenvalues of the
Levi-form, 00r(z). We say the eigenvalues {\x : k = s,..., s+I} are comparable
in a neighborhood U of zy € b2 if there are constants ¢, C > 0 such that

cAi(z) < X(2) <CNj(2), jk=s,....,s+1, z€U.

Definition 1.2. We say that a 1-dimensional analytic variety V' has order of
contact n at zg € b2 if there are constants ¢, C' > 0 such that
clz — zo|" < |r(2)] < Clz — 20|"
for all z € V sufficiently close to zg.
Example. Let Q C C* be a domain defined by
Q={z:7(2) = 2Rezs + |21|"° + (J22)? + | 23)*)'¥/3 < 0}.

Then, A;(0) = 10 = AT9(0), Ax(0) = 2, and V = {(£,0,0,0) : |¢| < a}
is a smooth variety whose order of contact with b at 0 is 10. Set L; =

0 _(Dry-10r 0 ' —_1 93 Then, the eigenvalues \x(2) =~ 90r(z)(Ly, Ly),

6723' - 8Z4 8Zj 67247
k = 2,3, are comparable near 0.

In this paper, we want to study a necessary condition for the Holder esti-
mates of the 0 equation when (n — 2)-eigenvalues of the Levi-form are compa-
rable and A,,_s(zp) < oo:

Theorem 1.3. Let Q be a smoothly bounded pseudoconvex domain in C”,
n > 3, and assume that there is a smooth 1-dimensional variety whose order of
contact at zg € bSY is n < co. Also, assume that the (n — 2)-eigenvalues of the
Levi-forms are comparable in a neighborhood of zy € b2 and A,_2(z0) < oo.
If there exist a neighborhood U of zg and a constant C' > 0 so that for each
v € L%Y(Q) with dv = 0, there is a u € L2(Q) N A.(UNQ) such that du = v
on ) and

(1.2) el wray < CllvllLe @)
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Let z = (21, ..., 2,) be local coordinates about zo. In the rest of this paper,
we set 2/ = (29,...,24), 2/ = (22,...,2n—1), and the same notations will be
used for other coordinates or multi-indices, @ = (a1, ...,ay,), that is, o/ =
(g, ..., ), and " = (ag,...,an_1), etc.

Remark 1.4. (1) Since V is a smooth analytic variety, we note that 7 is a
positive integer and A,,_1(z9) := my,—1 < 1. Thus, we have k < % < ﬁ in

(1.2) which improves Krantz’s result.
(2) In following, we will fix z; and consider the z; slice of {2

(1.3) Q. = {(21,2) : (21,7') € Q}.

Then, ,, can be regarded as a bounded pseudoconvex domain in C"~1.
Since the (n — 2)-eigenvalues of the Levi-form are comparable, the condition
A,_2(z0) < oo will play as the role of the condition Aj(zp) < oo on each €, .
(3) If n = 3, the comparable eigenvalues condition of the Levi form holds
vacuously. In this case, You [14] proved Theorem 1.3. Note that Aqs(zp) <
AT9(z) when n = 3. Consider the domain in C? (see [8]) defined by

r(z) = Rezz + |z% — z§’|2

Then AF9(0) = 6, and Ay(0) = 4 while A;(0) = oo as the complex analytic
curve y(t) = (¢3,¢2,0) lies in the boundary. Note that y(t) is not a smooth
curve.

(4) Whenever we have (n — 2)-positive eigenvalues, these eigenvalues are
comparable and hence Theorem 1.3 implies the results in [7] where we assumed
that we have (n — 2)-positive eigenvalues and A;(zp) < co.

In Section 2, we construct special coordinates at each reference point and
show that the z;-coordinate represents the given variety V', and the z’’-direc-
tions represent the comparable Levi-form directions. Let Cy(z0,00) denote the
curve close to the z-direction as defined in (2.8). To prove the main theorem
(Theorem 1.3), for each small 6 > 0, we need to construct a uniformly bounded
holomorphic function fs on €2 that satisfies

(1.4) s ()

>
Ozn,

1
5

for each z5 € Cy(20, do)-

In Section 2, we fix z; = Z; near z; = 6% and consider the sliced domain
Qz,. Then, we construct a family of plurisubharmonic functions with maximal
Hessian on each thin neighborhood of bQ;, as in [1] for n = 2 case, and then
show a bumping theorem. In Section 3, we push out the boundary of the
domain 3, as far as possible at each reference point Zs € bQ2z,. These are
some of the main ingredients for a construction of fs in (1.4). Section 4 is
devoted to proving Theorem 1.3.

Remark 1.5. Note that the bumping theorem or pushing out the domains are
done for the domains with Aj(zp) < oo [2,3,5]. In this paper, the condition
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Aq(zp) < oo is replaced by the conditions A, _2(zg) < oo and the compatibility
of the (n — 2)-eigenvalues.

2. Special coordinates and polydiscs

In the sequel, we assume that € is a smoothly bounded pseudoconvex domain
in C™", n > 3, with smooth defining function ry and that there is a smooth 1-
dimensional holomorphic curve V' whose order of contact with b§2 at zy € bS2
is equal to n and A, _2(zp) < co. We also assume that the (n — 2)-eigenvalues
of the Levi-form are comparable in a neighborhood W of z5. We may assume
that there are coordinate functions Z = (21, ..., Z,) near zg such that Z(zp) =0
and |0rg/0Z,| > ¢o in W for some fixed constant ¢o > 0.

Using these z-coordinates, set

L, and

T 0z,
9 drg\ oy 9
L}C:T— Q QT, k::l,...,n—l,
0z, 0z, 0Zy 0%y,
set
Cij(g) = 86T0(Li,Lj)(2), i,j = 1, e, — 1,

and assume that the eigenvalues of the matrix A := (¢;5)2<; j<n—1 are compara-
ble. Let m be the smallest integer bigger than or equal to A, _2(z0) (An—2(20)
could be a rational number). Here we may also assume that > m. As
in Proposition 2.3 in [6], we can prove that there are coordinate functions
z=(21,...,2n) near zg = 0 such that the given smooth one dimensional vari-
ety V can be regarded as the z;-axis:

Proposition 2.1. Let Q, rg, zg € bQ and W > zy be as above. There is a
biholomorphism ®y : C* — C", ®y(z) = Z, ®o(0) = 2o such that in terms of
z coordinates, 1(z) := rg o Dg(2) can be written as

’)"(Z) = Rezn + Z aj,kZ{EIf —|— Z ba//ﬂ//za’/zﬁlz

Jtk=n la” +B" |<m
(2.1) 3k>0 a1, [>0
: ik i "_pn
+ § C{X”ﬁ” Z{ ZiCZOé ZB + O (Emﬂ«](z)) 3
1<) +h<n

1<|a’" 187 |<m
where By, n(2) = |2]|zn| + 22|71 + |2 |™ T, and r(2) satisfies
(2.2) clt|” < |r(t,0,...,0,0)] < C[t|"
for some constants ¢, C > 0.

Remark 2.2. (1) Let do(21) == 3,4,
it follows from (2.1) and (2.2) that

(2.3) |do(z1)] & [r(21,00)] ~ |21 ]"-

a; x21Z% be the first sum in (2.1). Then
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(2) The coordinate change in Proposition 2.1 is about zy = 0 € b2, but not
about arbitrary point z € W.

In the rest of this section, we fix 6 > 0 and assume that z = (21,2",2,) e W
satisfies
(2.4) 17 — 67| < 7
for a sufficiently small v > 0. Let us fix Z; satisfying (2.4) and consider the
Z1-slice defined in (1.3). Then for each ' with (21, 2") € W, we can remove the
pure terms in the 2z’ (or z’’) variables inductively in the Taylor series expansion
of rz; =r(Z1,-) as in the proof of Proposition 1.1 in [1]:
Proposition 2.3. For each fized 2 = (21,2) € W, where 2, satisfies (2.4),
there exist numbers du.» (%), depending smoothly on %, such that in the new
coordinates ¢ = (%1,¢’) defined by

z = (Zlv (I)Z(C/)) - (213 7+ C//a Zn + (Dn(cl))a

where

n _ or . - Cn - 2\ o’
n@)=(550) (5% % de).

and the function p(21,¢") := 1o (21, ®:(¢")) satisfies

(25) pla.C)=r()+ ReCut Y. cangr (6T + O(E(31.0)),
‘Oé//-‘rﬁ//‘gm
[a’"],|8" >0

where E(z1,¢') = [Gall¢] + |2 [7H1 + ¢+,

Remark 2.4. (1) Set 2kg = maxqar gr |carpr(20)]. Since A,_2(29) < m, we
have kg > 0. Therefore it follows that
(2.6) max lcar g (Z)] > ko >0,
independent of Z provided W is sufficiently small because ¢, g (Z) are smooth
in 2.

(2) By setting ¢; = Z; and ¢ = (21,(’), we may regard that ®; : C" — C",
that is,

2:(¢) = (41, %)

(3) For each z = (21, 2", 2,) € W, define 7(z) := (21,2", mn(2)) € 082, where
7 (2) is the projection onto b2 along the z, direction. For each Z; satisfying
(2.4), set Z = (21,0') and set 2 = 7w(2) = (£1,0”,7m,(2)) € bQ. Using a Taylor
series in the variable z,, about 7, (%), we see that

) o )] + O3

Since |m,(Z)| < 1 and 2|8877;| =14+0(|z]) >

r(él,O’) = 2Re |:

1 on W, it follows from (2.3) that

|7Tn(2)| ~ |T‘(21,0,)‘ ~ |d0(21)| ~ |7:’1|77.
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For each small § > 0, set Zs = (5%,0’) (e, Z = 5%) and set

(2.7) %5 1= m(35) 1= (67,0", 70 (35)) € DL
For a sufficiently small b > 0, set zs5 := (6%70”,7%(25) —bd) € Q, and set
(2.8) Cy(20,00) :={25 : 0< I <ot U{z0} C QU {20},

where dg > 0 is a sufficiently small number such that zs € W for all 0 < § < §.
We will use the methods developed in [4-6] on each domain 3 keeping
track of the dependence of the Z; variable. For each Z = (21,2') € W, set

(2.9) Cs, (%) = max{|carpr (2)] : |a” + B"| = 52},

where cq g/ (Z) is defined in (2.5), and for each € > 0, define
. _ . \\1/s2

(2.10) T(Z €)=, min {(e/C,(2))

Note that 7(Z,¢) is well defined by (2.6) and it follows from (2.9) and (2.10)
that

/2 <7(z€) <€V/™) and
(€ /€)27(%,€) < T(5,€) < (/) mr(3,€), if € <e.

In the sequel, set ¢ = (%1,0’). Note that ®;(¢) = 2. For each ¢ > 0 and
€ > 0, define

RL(2) = {C: |G — 51| < e67, |Gl < er(%,6), k=2,...,n—1, |¢a] < ce},
and set
ee(2) = {(C1, ®:(¢)): (61, ¢) € Rec(9)}-
Also, we set
(211) R/ce(’é) = {(217C2a c 7Cn) : |Ck‘ < CT(éve)v k= 27 cee,— 1; |<n| < Ce}a
a polydisc in the ¢’ variables, and
Qee(2) = {(21,2:((") : (21,¢) € R(2)}-
As in Proposition 1.7 in [1], there exists an independent constant C' > 0
such that if z = (%1, 2') € QL(Z), then

Qc(2) C Que(%), and Q(2) C Qrc(2).
In view of (2.6), we note that the same inclusion relations hold if we fix 2’ and
vary Z1. Thus, we obtain that

Q2(2) C Q(2), and Q2(2) C Q¥ (2), if z € Q(2).

Again, by (2.6), we also have the following equivalence relations for 7(z,€)
(Proposition 2.14 in [6]).

Proposition 2.5. Assume z = (21,2') € Q%.(%). Then
(2.12) T(z,€) = T(Z,€)
for all sufficiently small ¢ > 0, independent of § > 0 and ¢ > 0.
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In the sequel, set Dy, = 8@ or f’ 1<k <n,andset 1, = §7. Recall that

¢ = (£1,0'). Combining (2.4), (2.9) and (2.10), the error term E(%1,¢’) in (2.5)
satisfies

DY E(C

)| 7_{7+1—l1 — §Tfl1+1’
DD E() =0, if 0 < || < m.

and
(2.13)

Proposition 2.6. Assume Z = (21,2') € W satisfies (2.4) and assume that
[r(2)] < 6. For each ly, and for each multi index v’ = (vo,...,Vp_1) with
0 < || <m, we have

DY p(Q)| S o', and

(2.14) ,o y
DY p(Q)] S er(z,)7 .

Proof. From (2.1), (2.2) and (2.13), it follows that
DY p(O)] = [Dyr(2)] S orp ",
and the second estimates follows from (2.5), (2.9), (2.10) and (2.13) O

For each fixed § > 0, set 2; = 6%/ and consider §'/7-slice of Q, Qs1/s.
For convenience of notation, set {2s = Qs1/,. Then s is a smoothly bounded
pseudoconvex domain in C*~! with comparable Levi-form near %5 € b§25 where
Z5 = 7r((5%,0’) is defined in (2.7). Since A, _2(Z5) < m, and the Levi-forms are
comparable, it follows that A;(Z5) < m (Proposition 2.12 in [6]).

To push out the domain 25 as far as possible at the reference point Z5 € b25N
W, we need to construct bounded plurisubharmonic functions with maximal
Hessian in a thin strip neighborhood of b5 as in Theorem 3.1 in [1]. Set

rs(2') = r(é%,z’), and for each small € > 0, define
Q5 = {(67,2) 1 75(2') < e},
Ss(e) = {(67,2') 1 —e < rs(2') < €}, and
Sy () = {(87,2) 1 —e < (') < 0}.
1

Using the estimates (2.12) and (2.14), we can prove the following theorem as
in the proof of Theorem 3.1 in [5]:

Proposition 2.7. For all small € > 0, there is a plurisubharmonic function
A§ € C°(W N Q) with the following properties:

(1) M)l <1, 2= (67,2) € QN W,

(ii) for all L' = Y7 _, arLy at z = ((ﬁ,z’) €Sy (e Nw,

n—1
DONS (L' L) (2) m (2,072 |awl? + e 2|an |, and
k=2
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(iil) if ®z(¢’) is the map associated with a given 2 = (5%,2') € Ss(e)NW,
then
DY (A5 0 2:(¢))] < Clem (2,071
holds for all ' € R.L(%2) where & = (ag,...,ay), and o/ = (ag,...,an_1), and

RL(%) is defined in (2.11).

Remark 2.8. In Theorem 2.3 of [2], the author proved a bumping theorem near
a point zg € Q of finite 1-type. All we need for that theorem is the existence
of a family of plurisubharmonic functions with maximal Hessian on each thin
strip Ss(e) as stated above in Proposition 2.7. Since A, _5(Zs) < m and the
Levi-form is comparable, it follows that A;(Zs) < m (Proposition 2.12 in [6]).

Recall that zs = 7r(6%,0’) € bQs defined in (2.7). In the sequel, for each
Z = (%,%), set BL(2) = {(%1,72) : |[# — 2| < ¢}, ¢ > 0. Using the family
of plurisubharmonic functions A§ in Proposition 2.7, we have the following
bumping theorem for each €25 as in [2]:

Theorem 2.9. Let V.CC W be a small neighborhood of zo € bS). There
exists an independent constant ro > 0 such that for each Zs € V N b8, we
have By, (25) CC W N {(5%,,2’) € C"}, and there is a smooth 1-parameter
family of pseudoconvex domains Q%, 0 < t < to, called the bumping family
of Q5 with front B, (%s), each defined by Qf = (67,2 : r§(2') < 0} where
ri(2") = r' (0, 2") has the following properties;

ri(2') is smooth in z = (8,2') € W and in t for 0 <t < to.

)
(2) r3(=") = r5(2") for (67,2") & By, (%).
(3) G (=) <. 1
(4) r3(z') = rs() =r(67,2).
(5) for =z = (67,2') € By, (35), %2 (2') < 0.

3. A construction of special functions

In this section, we construct a family of uniformly bounded holomorphic
functions {fs}s>o with large derivatives in the z,-direction along the curve
Ch(20,60) C Q2 defined in (2.8). Let us fix 6 > 0 for a while and concentrate on

. . 1 1
the point Z5 € b)s defined in (2.7) where Q5 := 95% ={(07,2"): (67,2") € Q}.
For a construction of {fs}s~0, we use “Bumping theorem” in Theorem 2.9 as
well as pushing out b{25 as far as possible at each reference point Zs.

Recall the function ®z, () = (6%,{)55 (¢")) defined in Proposition 2.3. Set
Wi=Wn{(Y",2): 2 € C" 1}, Qf = (®5,) "' (Qs) and set
Wi = (@)~ (W5).
Then Qf is a smoothly bounded pseudoconvex domain in C"~! and the (n—2)-

eigenvalues are uniformly comparable, and the estimate (2.6) holds uniformly,
independent of § > 0. We want to construct a domain D§ C C"~! which
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contains 2 such that the boundary of Dj is pushed out essentially as far as
possible near ¢° = (6%,0’) = (®3,) "1 (25) € b, so that bDj is pseudoconvex.
Set

(3.1) ()= |+l + D Cul)IK12 |

2<sa<m
where Cy, (Zs) is defined in (2.9), and let 79 > 0 be the constant in Theorem 2.9.
Note that Bj,, C W;y. For each small e > 0, set

Wie = {(6"7,¢') € Wi 2 p(67,¢') < eJs(¢)} N B, ().
If we use the family {\§} constructed in Proposition 2.7, and follow the methods

in Section 4 of [1], we can show that Wée is the maximally pushed out domain
of % near ¢° such that

bWj o= {(8Y/7,¢") € Wi+ p(87,¢') = eJ5(¢)} N B, (%)
is pseudoconvex for all sufficiently small e > 0.

To connect the pushed out part W(§7e and Qf, we use the bumping family
{Q%} with front Bj, (%5) as in Theorem 2.9. Set

toe = (% \ By, () U (W5 . N Q).

Then DL 5, becomes a pseudoconvex domain which is pushed out near ¢ =
(®:,)71(%5) provided t > 0 and e > 0 are sufficiently small. In the sequel, we
fix these t = to and e = e and set Dj := DQO@EO. Note that these choices of ¢y
and eg > 0 are independent of 6 > 0. If we use the methods in Section 6 of [1]
(or Section 3 of [4]), we see that there exists a L?(D}) holomorphic function fs

satisfying

(3.2)

independent of §, where z5 = (5%,0”, Tn(Z5) —bd) € Cp(20,00), and where b > 0
is taken so that Cy(29, ) C Q. Note that f5 is independent of z; variable. We
will show that fs is holomorphic in a domain including the z; direction near
zZ1 = (5%

Recall that % or Dj can be regarded as domains in C"~! by fixing ¢; = 5.
In terms of the special coordinates ¢ = (21,¢’) defined in Proposition 2.3, set

1 1 T
P o(3) ={C: |G — 07| <167, || < ﬁ k=2....n}

where rq is the constant fixed in Theorem 2.9, and set

Qe 6(%5) = Pey (%) N{C: p(¢() <0} C Q.
Also, for each § > 0, e > 0, and ¢; > 0, set

O 5(35) = Pay (%) N {(C1,¢) : p(87,¢) < eds(¢)} € C™.
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Then ¢, ;(%5) is obtained by moving Wj . along the (; direction.

c

Lemma 3.1. For sufficiently small c1 > 0, we have Q, 5(%5) CC Qi{i;(,é(;), or
equivalently,

(3.3) p(67,¢") = p(¢) < g«]é((/) for ¢ =(¢1,¢") € Qe, 5(%5).

Proof. Assume ¢ = ((1,() € Q¢ 5(%5). Then

(3.4) 0(0) = p(67,¢)| < erdn  max |Dip(1,¢)].
‘517§T7|<01671

Note that ®z, is independent of {; = z;. Since p(¢) = ro (1, Pz, ('), it follows
from (2.5), (2.14), (3.1), and a Taylor series that

(3.5) Dip(G N £ 6777 £ 6700().
Combining (3.4) and (3.5), we obtain (3.3) provided ¢; > 0 is sufficiently
small. 0

If we use the standard inequality:
—q/ 1 1
ab<0a? +07UPp? — 4+ - =1 forall 0,a,b>0,
p q

one obtains that
(3.6) (a+b)* <2a° + (s 1%, s> 1.

Since fs is independent of (1, we see that fs is holomorphic on QF, ; (25). We
will show that f5 is bounded uniformly on ﬁi{i; for some a;, 0 < a; <c¢p < 22

to be determined. For each ¢ = (q1,¢') € ﬁiﬁ;, set 11 = 5%, T = 7(Zs, J5(¢')),
2<k<n-1,7,=Js(q¢), and define a non-isotropic polydisc le (q) by

o (@) = {C: G —ar| <army, 1<k <n}.
Lemma 3.2. There is an independent constant 0 < a1 < ¢1 such that
(3.7) 5.(0) %5 Jor a=(a,d) € Ul
Proof. Assume ¢ € Q5 (q). Then, it follows from (2.9), and (2.10) that

sy (26)21¢" = ¢"** < (n = 2)*2a7 Cy, (25)°7 (%5, Js(q')) >

3.8
( ) (TL _ 2)520/%52 Jé(q/)2>

IN
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and |, — gn|? < a2Js5(q’)?. Thus, it follows from (3.1), (3.6), and (3.8) that

Jg(q/)Q _ 52 + ‘Qn|2 + Z 052(25)2|q”|282

32:2

S 52 + 2|<n‘2 + 2|§n - qn|2

+ Z 032(26)2 (Z‘C//‘QSQ + ((282)!)2527”(// _ q//|252)

So=2
< 2J5(¢)2 + [anm((Zm)!)Zm_laf] Js(q')%

If we take a; > 0 so that 2mn™((2m)!)*™ 1a? < 1, we obtain that Js5(¢') <
2J5(¢"). By the same argument, we have J5(¢') < 2J5(¢"). Therefore we obtain
that

(39) SI5(d) < J5(¢) < 275(d) for ¢ € @), (a).

Assume ¢ = (q1,¢') € 0% and ¢ € Q% (q). Then, p(d%,¢) < £Js(q).
Thus, we have

(3.10) p(87.¢") < $T5(a) +1V'p(07,) - (¢ = 4]

for some (6%,5’) € QJ,(g) where V' denotes the gradient of the (' variables.
From (2.9), (2.10), and (2.14) (with € replaced by Js(q')), we obtain that

(3.11) [Dip(37. ) £ Js(a )75, Ts(a) ™ (67.0) € Q2 (a),
for 2<k <n-—1,and |D,p| < 1. Combining (3.9)—(3.11), we obtain that

1 e
p(67,¢") < 55(¢) + CoarJs(d) < eJs5(("),
if we take a; > 0 so that 4Cza; < e. Therefore, ¢ € Q5 proving (3.7). O

a

Remark 3.3. In the above discussion, e > 0 is any number such that 0 < e < eg.
Thus, in particular, we can fix e = ey where e is fixed before (3.2).

Theorem 3.4. fs is a bounded holomorphic function in ﬁ;{i; and satisfies

Ofs (25) 1

(3.12) ‘8@ > =,

25 € Cp(20,00),

independent of 6.

Proof. By (3.2) and (3.3), we already know that there is a L? holomorphic
function fs5 on g 5(Z;5) satisfying the estimate (3.12). We only need to show
that fs is bounded in ﬁi{i;. Assume ¢q € ﬁi{i; C Qf 5 where 0 < a1 <
c1. Then Q5 (q) C Q5,5 C Q¢ 5 by Lemma 3.2. Now if we use the mean
value theorem on polydisc le (q) C Qf, 5 and the fact that f5 € LQ(QEM;) is

holomorphic, we will get the boundedness of f5 on ﬁifé. (I
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4. Proof of Theorem 1.3

The proof is similar to that in [7]. We will sketch the proof briefly here.
Let ¢; > 0, and a; > 0 be the constants fixed in Lemma 3.1 and Lemma 3.2
respectively. We may assume that 0 < 2b < a3 < ¢;. For each 6 > 0, let
fs be the function defined in Theorem 3.4. Therefore, f5 is L? holomorphic

on ¢ 5(%5), bounded on ﬁ;{i;, independent of (; variable, and satisfies the
estimates in (3.12). Set

oS ()e(8) o ()

where

Note that
= 1
10951l Lo () S 077

Assume that us € L2(Q) N A.(U N Q) solves dus = dgs on Q as in Theo-
rem 1.3. Then we have

= _1
(4.1) lulls, ey < CllOgsllL.o) S 677

Set hs = us — gs. Then hg is holomorphic in 2. Set

—%)7 and

4 )
a5(0) = (647 + 30151/"619, 0,...,0,—bd), 0 €R.

4 .
@0) = (67 + 30151/’76’9,0, ...,0,

Note that g5(¢{(0)) = g5(¢5(0)) = 0. From (1.2) and (4.1) we obtain that

2m

42) Hy= | [ lus(at0) — us(0)1a8] < Bl 57

FONI‘ the lolvve~r bounds of Hs, set (5 = (0", —%‘5), fg = (0",-b8), s = ((5%,@'5),
and (s = (67,¢5). Then a Taylor’s series of fs5 in (, variable shows that

F5(07,¢) = £5(C3) + af @G+ D) v0 < (Gt 2 ) |
Especially, when (,, = —bd, we have
~ 0 bd
(4.9 556 - 6] = | T G- ) + 06| 2

because |‘9f‘S (¢5)] = % by (3.12).
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Note that gs((s) = f(¢5) and 95(55) = f((i’;) because 0 < 2b < a1 < ¢1.
Therefore, it follows from (1.2), (4.1), (4.3), and the Mean Value Property that

=5 [ nlaf ) = nstatonlan] = [ns(@) - s
™ Jo

> |15(G5) = F5(G5)] — [us(s) — us(Gs)| > o — Cod™

for some constants 0 < ¢y < 1 < Cy. If we combine (4.2) and (4.4), we obtain
that

(4.4)

(4.5) 1< 65 .

Now, if we assume k > % and take § — 0, then (4.5) will be a contradiction.

Therefore, xk < % U
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