Acknowledgement
This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 2020/1/16794.
References
- Abbas, S., Banerjee, M. and Momani, S. (2011), "Dynamical analysis of fractional-order modified logistic model", Comput. Mathe. Applicat., 62(3), 1098-1104. https://doi.org/10.1016/j.camwa.2011.03.072
- Agarwal, R. and Karahanna, E. (2000), "Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage", MIS Quarterly, 665-694. https://doi.org/10.2307/3250951
- Ahmed, E., El-Sayed, A.M.A. and El-Saka, H.A. (2007), "Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models", J. Mathe. Anal. Applicat., 325(1), 542-553. https://doi.org/10.1016/j.jmaa.2006.01.087
- Ahmed, E., Hashish, A. and Rihan, F.A. (2012), "On fractional order cancer model", J. Fract. Calculus Appl. Anal., 3(2), 1-6. https://doi.org/10.1155/2013/816803
- Arafa, A.A.M., Rida, S.Z. and Khalil, M. (2013), "The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model", Appl. Mathe. Modell., 37(4), 2189-2196. https://doi.org/10.1016/j.apm.2012.05.002
- Arenas, A.J., Gonzalez-Parra, G. and Chen-Charpentier, B.M. (2016), "Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order", Mathe. Comput. Simul., 121, 48-63. https://doi.org/10.1155/2017/8273430
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
- Banerjee, S. (2008), "Immunotherapy with interleukin-2: a study based on mathematical modeling", Int. J. Appl. Mathe. Comput. Sci., 18(3), 389-398. https://doi.org/10.2478/v10006-008-0035-6
- Banerjee, S. and Sarkar, R.R. (2008), "Delay-induced model for tumor-immune interaction and control of malignant tumor growth", Bio Syst., 91(1), 268-288. https://doi.org/:10.1016/j.biosystems.2007.10.002
- Bray, F., Jemal, A., Grey, N., Ferlay, J. and Forman, D. (2012), "Global cancer transitions according to the Human Development Index (2008-2030): a population-based study", lancet oncol., 13(8), 790-801. https://doi.org/10.1016/S1470-2045(12)70211-5
- Chabner, B.A. and Roberts, T.G. (2005), "Chemotherapy and the war on cancer", Nature Rev. Cancer, 5(1), 65-72. https://doi.org/10.1038/nrc1529
- Chen, W.-C. (2008), "Nonlinear dynamics and chaos in a fractional-order financial system", Chaos Solitons Fractals, 36(5), 1305-1314. https://doi.org/10.1016/j.chaos.2006.07.051
- Curti, B.D., Ochoa, A.C., Urba, W.J., Alvord, W.G., Kopp, W.C., Powers, G., Hawk, C., Creekmore, S.P., Gause, B.L., Janik, J.E. and Holmlund, J.T. (1996), "Influence of interleukin-2 regimens on circulating populations of lymphocytes after adoptive transfer of anti-CD3-stimulated T cells: results from a phase I trial in cancer patients", Journal of Immunotherapy with Emphasis on Tumor Immunology: Official Journal of the Society for Biological Therapy, 19(4), 296-308. https://doi.org/ 10.1097/00002371-199607000-00005.
- De Boer, R.J., Hogeweg, P., Dullens, H.F., De Weger, R.A. and Den Otter, W. (1985), "Macrophage T lymphocyte interactions in the anti-tumor immune response a mathematical model", J. Immunol., 134(4), 2748-2758. https://doi.org/10.1016/S0022-5193(05)80142-0
- De Pillis, L.G. and Radunskaya, A. (2003), "The dynamics of an optimally controlled tumor model: A case study", Mathe. Comput. Modell., 37(11), 1221-1244. https://doi.org/10.1016/S0895-7177(03)00133
- De Pillis, L.G., Gu, W. and Radunskaya, A.E. (2006), "Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations", J. Theor. Biol., 238(4), 841-862. https://doi:10.1016/j.jtbi.2005.06.037
- DeLisi, C. and Rescigno, A. (1977), "Immune surveillance and neoplasia-1 a minimal mathematical model", Bull. Mathe. Biol., 39(2), 201-221. https://doi.org/10.1016/S0092-8240(77)80008-6
- Din, Q. (2017), "Complexity and chaos control in a discrete-time prey-predator model", Commun. Nonlinear Sci. Numer. Simul., 49, 113-134. https://doi.org/10.1016/j.cnsns.2017.01.025
- Din, Q. and Ishaque, W. (2020), "Bifurcation analysis and chaos control in discrete-time eco-epidemiological models of pelicans at risk in the Salton Sea", Int. J. Dyn. Control, 8(1), 132-148. https://doi.org/10.1007/s40435-019-00508-x
- Duan, W.L. (2020), "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises", Chaos Solitons Fractals, 141, 110303. https://doi.org/10.1016/j.chaos.2020.110303
- Duan, W.L., Fang, H. and Zeng, C. (2019), "The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises", Chaos Solitons Fractals, 127, 96-102. https://doi.org/10.1016/j.chaos.2019.06.030
- Edelstein-Keshet, L. (2005), "Mathematical models in biology", SIAM. https://doi.org/10.1137/1.9780898719147
- Eladdadi, A., Pillis, L.D. and Kim, P. (2018), "Modelling tumour-immune dynamics, disease progression and treatment", Taylor and Francis. https://doi.org/10.1080/23737867.2018.1483003
- Elsadany, A. and Matouk, A. (2015), "Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization", J. Appl. Mathe. Comput., 49(1-2), 269-283. http://dx.doi.org/10.1007%2Fs12190-014-0838-6 https://doi.org/10.1007%2Fs12190-014-0838-6
- El-Sayed, A.M.A., Elsonbaty, A., Elsadany, A.A. and Matouk, A.E. (2016), "Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization", Int. J. Bifurcat. Chaos, 26(13), 1650222. https://doi.org/10.1142/S0218127416502229
- Galach, M. (2003), "Dynamics of the Tumor-Immune System Competition the Effect of Time Delay", Int. J. Appl. Mathe. Comput. Sci, 13, 395-406. https://doi.org/10.1155/DDNS/2006/58463
- Gonzalez-Parra, G., Arenas, A.J. and Chen-Charpentier, B.M (2014), "A fractional order epidemic model for the simulation of outbreaks of influenza A (H1N1)", Mathe. Methods Appl. Sci., 37(15), 2218-2226. https://doi.org/10.1002/mma.2968
- Gorenflo, R. and Mainardi, F. (1997), "Fractional calculus", Fractals and fractional calculus in continuum mechanics, Springer, 223-276. https://doi.org/10.1007/978-3-7091-2664-6
- Hilfer, R. (2000), "Applications of fractional calculus in physics", World scientific, Singapore. https://doi.org/10.1142/3779
- Huang, C., Cao, J. and Xiao, M. (2016), "Hybrid control on bifurcation for a delayed fractional gene regulatory network." Chaos Solitons Fractals, 87, 19-29. https://doi.org/10.1007/s11431-018-9376-2
- Itik, M., Salamci, M.U. and Banks, S.P. (2009), "Optimal control of drug therapy in cancer treatment", Nonlinear Anal.: Theory, Methods Applicat., 71(12), e1473-e1486. https://doi.org/10.3906/elk-1001-411
- Jun, D., Guang-jun, Z., Yong, X., Hong, Y. and Jue, W. (2014), "Dynamic behavior analysis of fractional-order Hindmarsh-Rose neuronal model", Cognitiveneurodynamics, 8(2), 167-175. https://dx.doi.org/10.1007%2Fs11571-013-9273-x https://doi.org/10.1007%2Fs11571-013-9273-x
- Kar, V.R. and Panda, S.K. (2016), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014
- Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., Int. J., 5(4), 205-221.
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125
- Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct, Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
- Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
- Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202
- Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., Int. J., 34(2), 279-288. https://doi.org/10.12989/sss.2017.20.5.595
- Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595
- Kirschner, D. and Panetta, J.C. (1998), "Modeling immunotherapy of the tumor-immune interaction", J. Mathe. Biol., 37(3), 235-252. https://doi.org/10.1007/s002850050127
- Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A. and Perelson, A.S. (1994), "Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis", Bull. Mathe. Biol., 56(2), 295-321. https://doi.org/10.1016/S0092-8240(05)80260-5
- Laskin, N. (2002), "Fractional schrodinger equation", Phys. Rev. E, 66(5), 056108. https://doi.org/10.1103/PhysRevE.66.056108
- Liao, W., Lin, J.X. and Leonard, W.J. (2011), "IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation", Current Opinion Immunol., 23(5), 598-604. https//doi.org/10.1016/j.coi.2011.08.003
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
- Marincola, F.M., White, D.E., Wise, A.P. and Rosenberg, S.A. (1995), "Combination therapy with interferon alfa-2a and interleukin-2 for the treatment of metastatic cancer", J. Clinical Oncology, 13(5), 1110-1122. https://doi.org/10.1385/1-59745-011
- Matouk, A. and Elsadany, A. (2016), "Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model", Nonlinear Dyn., 85(3), 1597-1612. https//doi.org/10.1007/s11071-016-2781-6
- Matouk, A.E., Elsadany, A.A., Ahmed, E. and Agiza, H.N. (2015), "Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization", Commun. Nonlinear Sci. Numer. Simul., 27(1-3), 153-167. http://dx.doi.org/http://dx.doi.org/10.10 16/j.cnsns.2015.03.004 https://doi.org/10.1016/j.cnsns.2015.03.004
- Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002
- Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D. and Feliu-Batlle, V. (2010), "Fractional-order systems and controls: fundamentals and applications", Springer Science and Business Media. https//doi.org/:10.1007/978-1-84996-335-0
- Oldham, K.B. (2010), "Fractional differential equations in electrochemistry", Adv. Eng. Software, 41(1), 9-12. https//doi.org/10.1016/j.advengsoft.2008.12.012
- Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermomechanical loading", Int. J. Appl. Computat. Mathe., 1(3), 475-490. https://doi.org/10.1007/s40819-015-0035-9
- Podlubny, I. (1999), "Fractional differential equations", Vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, CA, USA. https//doi.org/10.12691/ajma-1-1-3
- Rihan, F.A., Hashish, A., Al-Maskari, F., Hussein, M.S., Ahmed, E., Riaz, M.B. and Yafia, R. (2016), "Dynamics of tumor-immune system with fractional-order", J. Tumor Res., 2(1), 109-115.
- Rowlands, M. and Gunnell, D. (2009), "HArrIS r, VATTEN LJ, HOLLy JM, MAr-TIN rM. Circulating insulin-like growth factor peptides and prostate cancer risk: A systematic review and meta-analysis", Int. J. Cancer, 124, 2416-2429. https://doi.org/10.1002/ijc.24202
- Rutter, E.M. and Kuang, Y. (2017), "Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer", Discrete Continuous Dyn. Syst.-B, 22(3), 1001. http://dx.doi.org/10.3934/dcdsb.2017050
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265
- Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Tarasov, V.E. (2008), "Fractional vector calculus and fractional Maxwell's equations", Annals Phys., 323(11), 2756-2778. https://doi.org/10.1016/j.aop.2008.04.005
- Tenreiro Machado, J.A., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C.M., Marcos, M.G. and Galhano, A.F. (2010), "Some applications of fractional calculus in engineering", Mathe. Problems Eng. https://doi.org/10.1155/2010/639801
- Thamareerat, N., Luadsong, A. and Aschariyaphotha, N. (2017), "Stability results of a fractional model for unsteady-state fluid flow problem", Adv. Differ. Equ., 74. https://doi.org/10.1186/s13662-017-1116-3
- Thariat, J., Hannoun-Levi, J.M., Myint, A.S., Vuong, T. and Gerard, J.P. (2013), "Past, present, and future of radiotherapy for the benefit of patients", Nature Rev. Clinical Oncol., 10(1), 52. https://doi.org/10.1038/nrclinonc.2012.203
- Ucar, E., Ozdemir, N. and Altun, E. (2019), "Fractional order model of immune cells influenced by cancer cells", Mathe. Modell. Natural Phenomena, 14(3), 308. https://doi.org/10.1051/mmnp/2019002
- Villasana, M. and Radunskaya, A. (2003), "A delay differential equation model for tumor growth", J. Mathe. Biol., 47(3), 270-294. https://doi.org/10.1007/s00285-003-0211-0
- Wen, G. (2005), "Criterion to identify Hopf bifurcations in maps of arbitrary dimension", Phys. Rev. E, 72(2), 026201. https://doi.org/10.1103/PhysRevE.72.026201
- Wen, G., Chen, S. and Jin, Q. (2008), "A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker", J. Sound Vib., 311(1-2), 212-223. https://doi.org/10.1016/j.jsv.2007.09.003
- Wyld, L., Audisio, R.A. and Poston, G.J. (2015), "The evolution of cancer surgery and future perspectives", Nature Rev Clinical Oncol., 12(2), 115. https://doi.org/10.1038/nrclinonc.2014.191
- Yuste, S.B., Acedo, L. and Lindenberg, K. (2004), "Subdiffusionlimited A+ B→ C reaction-subdiffusion process", Phys. Rev. E, 69(3), 36-126. https://doi.org/10.1103/PhysRevE.69.036126
- Zhang, J., Nan, J., Du, W., Chu, Y. and Luo, H. (2016), "Dynamic analysis for a fractional-order autonomous chaotic system", Discrete Dyn. Nature Soc., 2016. https://doi.org/10.1155/2016/8712496.