DOI QR코드

DOI QR Code

Ultrasound Contrast Agent

초음파 조영제

  • Kim, Gi-Wook (Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School)
  • 김기욱 (전북대학교 의과대학 재활의학교실)
  • Received : 2021.11.29
  • Accepted : 2021.12.14
  • Published : 2021.12.31

Abstract

Ultrasound imaging in clinical practice is one of the widely used diagnostic methods because there is no radiation risk, more cost- effective compared to MRI or CT, and possible to perform an intervention through fast real-time imaging. In order to increase the diagnostic value, the studies of contrast-enhanced ultrasound (CEUS) using an ultrasound contrast agent have been actively conducted since about 50 years ago and are being used clinically in vascularity and microcirculation of internal organs. Although ultrasound is actively used for the diagnosis and treatment of various diseases in musculoskeletal disorders, there are some limitations in diagnosing mild or small lesions, inflammatory reactions, or abnormalities at the molecular level. In this review, the principles, types, and research, and clinical applications of ultrasound contrast agents have been summarized and introduced. If we understand the characteristics of the ultrasound contrast agents and anatomical knowledge, as well as molecular changes, the ultrasound contrast agents are widely applied in musculoskeletal disorders and have tremendous potential for diagnosis and treatment.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program Through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1I1A3A01061885).

References

  1. Shin SJ, Jeong BJ. Principle and comprehension of ultrasound imaging. J Korean Orthop Assoc 2013;48:325-33. https://doi.org/10.4055/jkoa.2013.48.5.325
  2. Lew HL, Chen CP, Wang T-G, Chew KT. Introduction to musculoskeletal diagnostic ultrasound: examination of the upper limb. Am J Phys Med Rehabil 2007;86:310-21. https://doi.org/10.1097/PHM.0b013e31803839ac
  3. Lin DC, Nazarian LN, O'Kane PL, McShane JM, Parker L, Merritt CR. Advantages of real-time spatial compound sonography of the musculoskeletal system versus conventional sonography. Am J Roentgenol 2002;179:1629-31. https://doi.org/10.2214/ajr.179.6.1791629
  4. Huang Q, Zeng Z, Li X. 2.5-D extended field-of-view ultrasound. IEEE Trans Med Imaging 2017;37:851-9. https://doi.org/10.1109/tmi.2017.2776971
  5. Sigrist RM, Liau J, El Kaffas A, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics 2017;7:1303-29. https://doi.org/10.7150/thno.18650
  6. Perdios D, Besson A, Arditi M, Thiran JP. A deep learning approach to ultrasound image recovery. 2017 IEEE Int Ultrason Symp 2017. p. 1-4.
  7. Muse ED, Topol EJ. Guiding ultrasound image capture with artificial intelligence. Lancet 2020;396:749. https://doi.org/10.1016/s0140-6736(20)31875-4
  8. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968;3:356-66. https://doi.org/10.1097/00004424-196809000-00011
  9. Gramiak R, Shah PM, Kramer DH. Ultrasound cardiography: contrast studies in anatomy and function. Radiology 1969;92:939-48. https://doi.org/10.1148/92.5.939
  10. Ziskin MC, Bonakdarpour A, Weinstein DP, Lynch PR. Contrast agents for diagnostic ultrasound. Invest Radiol 1972;7:500-5. https://doi.org/10.1097/00004424-197211000-00006
  11. Cosgrove D. Ultrasound contrast agents: an overview. Eur J Radiol 2006;60:324-30. https://doi.org/10.1016/j.ejrad.2006.06.022
  12. Frinking P, Segers T, Luan Y, Tranquart F. Three decades of ultrasound contrast agents: a review of the past, present and future improvements. Ultrasound Med Biol 2020;46:892-908. https://doi.org/10.1016/j.ultrasmedbio.2019.12.008
  13. Mody VV, Siwale R. Application of nanoparticles in diagnostic imaging via ultrasonography. Internet J Med Update 2011;6:8-15.
  14. Quaia E. Physical basis and principles of action of microbubble-based contrast agents. In: Quaia E, editor. Contrast Media in Ultrasonography: Basic Principles and Clinical Applications. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. p. 15-30.
  15. Lee HJ, Chung JH, Hwang SI. The application of contrast enhanced ultrasound in molecular imaging. J Korean Soc Ultrasound Med 2009;28:139-45. https://doi.org/10.7863/jum.2009.28.2.139
  16. Stride E, Saffari N. Investigating the significance of multiple scattering in ultrasound contrast agent particle populations. IEEE Trans Ultrason Ferroelectr Freq Control 2005;52:2332-345. https://doi.org/10.1109/TUFFC.2005.1563278
  17. Chang KV, Lew HL, Wang TG, Chen WS. Use of contrast-enhanced ultrasonography in musculoskeletal medicine. Am J Phys Med Rehabil 2012;91:449-57. https://doi.org/10.1097/PHM.0b013e31823caaa3
  18. Stride E, Saffari N. Microbubble ultrasound contrast agents: a review. Proc Inst Mech Eng H 2003;217:429-47. https://doi.org/10.1243/09544110360729072
  19. Sirsi S, Borden M. Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol 2009;1:3-17. https://doi.org/10.1179/175889709X446507
  20. Feinstein SB, Shah PM, Bing RJ, Meerbaum S, Corday E, Chang BL, et al. Microbubble dynamics visualized in the intact capillary circulation. J Am Coll Cardiol 1984;4:595-600. https://doi.org/10.1016/s0735-1097(84)80107-2
  21. Quaia E. Microbubble ultrasound contrast agents: an update. Eur Radiol 2007;17:1995-2008. https://doi.org/10.1007/s00330-007-0623-0
  22. Correas JM, Bridal L, Lesavre A, Mejean A, Claudon M, Helenon O. Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol 2001;11:1316-28. https://doi.org/10.1007/s003300100940
  23. Unnikrishnan S, Klibanov AL. Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. Am J Roentgenol 2012;199:292-99. https://doi.org/10.2214/ajr.12.8826
  24. Burns PN, Wilson SR. Microbubble contrast for radiological imaging: 1. Principles. Ultrasound Q 2006;22:5-13.
  25. Dijkmans P, Juffermans L, Musters R, van Wamel A, ten Cate FJ, van Gilst W, et al. Microbubbles and ultrasound: from diagnosis to therapy. Eur J Echocardiogr 2004;5:245-6. https://doi.org/10.1016/j.euje.2004.02.001
  26. Lanza GM, Wickline SA. Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog Cardiovasc Dis 2001;44:13-31. https://doi.org/10.1053/pcad.2001.26440
  27. Seo M, Gorelikov I, Williams R, Matsuura N. Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy. Langmuir 2010;26:13855-60. https://doi.org/10.1021/la102272d
  28. Chen F, Ma M, Wang J, Wang F, Chern SX, Zhao ER, et al. Exosome-like silica nanoparticles: a novel ultrasound contrast agent for stem cell imaging. Nanoscale 2017;9:402-11. https://doi.org/10.1039/C6NR08177K
  29. Zhang K, Chen H, Guo X, Zhang D, Zheng Y, Zheng H, et al. Double-scattering/reflection in a single nanoparticle for intensified ultrasound imaging. Sci Rep 2015;5:1-11.
  30. Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. Nanoscale 2019;11:799-819. https://doi.org/10.1039/C8NR07769J
  31. Flegg MB, Poole CM, Whittaker AK, Keen I, Langton C. Rayleigh theory of ultrasound scattering applied to liquid-filled contrast nanoparticles. Phys Med Biol 2010;55:3061-76. https://doi.org/10.1088/0031-9155/55/11/005
  32. Zheng SG, Xu HX, Chen HR. Nano/microparticles and ultrasound contrast agents. World J Radiol 2013;5:468-71. https://doi.org/10.4329/wjr.v5.i12.468
  33. Wang X, Chen H, Zheng Y, Ma M, Chen Y, Zhang K, et al. Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials 2013;34:2057-68. https://doi.org/10.1016/j.biomaterials.2012.11.044
  34. Min HS, Son S, You DG, Lee TW, Lee J, Lee S, et al. Chemical gas-generating nanoparticles for tumor-targeted ultrasound imaging and ultrasound-triggered drug delivery. Biomaterials 2016;108:57-70. https://doi.org/10.1016/j.biomaterials.2016.08.049
  35. Malvindi MA, Greco A, Conversano F, Figuerola A, Corti M, Bonora M, et al. Magnetic/Silica Nanocomposites as Dual-Mode Contrast Agents for Combined Magnetic Resonance Imaging and Ultrasonography. Adv Funct Mater 2011;21:2548-55. https://doi.org/10.1002/adfm.201100031
  36. Stramare R, Raffeiner B, Ciprian L, Scagliori E, Coran A, Perissinotto E, et al. Evaluation of finger joint synovial vascularity in patients with rheumatoid arthritis using contrast-enhanced ultrasound with water immersion and a stabilized probe. J Clin Ultrasound 2012;40:147-54. https://doi.org/10.1002/jcu.21887
  37. Adler RS, Fealy S, Rudzki JR, Kadrmas W, Verma NN, Pearle A, et al. Rotator cuff in asymptomatic volunteers: contrast-enhanced US depiction of intratendinous and peritendinous vascularity. Radiology 2008;248:954-61. https://doi.org/10.1148/radiol.2483071400
  38. Gamradt SC, Gallo RA, Adler RS, Maderazo A, Altchek DW, Warren RF, et al. Vascularity of the supraspinatus tendon three months after repair: characterization using contrast-enhanced ultrasound. J Shoulder Elbow Surg 2010;19:73-80. https://doi.org/10.1016/j.jse.2009.04.004
  39. Rudzki JR, Adler RS, Warren RF, Kadrmas WR, Verma N, Pearle AD, et al. Contrast-enhanced ultrasound characterization of the vascularity of the rotator cuff tendon: age-and activity-related changes in the intact asymptomatic rotator cuff. J Shoulder Elbow Surg 2008;17:96S-100S. https://doi.org/10.1016/j.jse.2007.07.004
  40. Loizides A, Widmann G, Freuis T, Peer S, Gruber H. Optimizing ultrasound-guided biopsy of musculoskeletal masses by application of an ultrasound contrast agent. Ultraschall Med 2011;32:307-10. https://doi.org/10.1055/s-0029-1245713
  41. Daniels SP, Gettle LM, Blankenbaker DG, Lee KS, Ross AB. Contrast-enhanced ultrasound-guided musculoskeletal biopsies: our experience and technique. Skelet Radiol 2021;50:673-81. https://doi.org/10.1007/s00256-020-03604-8
  42. Fischer C, Kunz P, Strauch M, Weber M-A, Doll J. Safety profile of musculoskeletal contrast-enhanced ultrasound with sulfur hexafluoride contrast agent. Ther Clin Risk Manag 2020;16:269-80. https://doi.org/10.2147/TCRM.S235235
  43. Kim GW, Kang C, Oh YB, Ko MH, Seo JH, Lee D. Ultrasonographic imaging and anti-inflammatory therapy of muscle and tendon injuries using polymer nanoparticles. Theranostics 2017;7:2463-76. https://doi.org/10.7150/thno.18922
  44. Kim GW, Song NH, Park MR, Kim TE, Kim DS, Oh YB, et al. Diagnosis and Simultaneous Treatment of Musculoskeletal Injury Using H2O2-Triggered Echogenic Antioxidant Polymer Nanoparticles in a Rat Model of Contusion Injury. Nanomaterials (Basel) 2021;11:2571. https://doi.org/10.3390/nano11102571