DOI QR코드

DOI QR Code

테플론 코팅과 오일 담지를 이용한 알루미늄 양극산화피막의 응축 열전달 향상

Enhancement of Condensation Heat Transfer of Anodized Aluminum by Teflon Coating and Oil-Impregnation

  • 강민주 (부경대학교 금속공학과) ;
  • 이종훈 (부경대학교 금속공학과) ;
  • 차수진 (부경대학교 금속공학과) ;
  • 신예지 (부경대학교 금속공학과) ;
  • 김동현 (한국세라믹 기술원 기업지원본부) ;
  • 김경자 (한국세라믹 기술원 기업지원본부) ;
  • 이정훈 (부경대학교 금속공학과)
  • Kang, Minjoo (Department of Metallurgical Engineering, Pukyong National University) ;
  • Lee, Jonghoon (Department of Metallurgical Engineering, Pukyong National University) ;
  • Cha, Soojin (Department of Metallurgical Engineering, Pukyong National University) ;
  • Shin, Yeaji (Department of Metallurgical Engineering, Pukyong National University) ;
  • Kim, Donghyun (Business Support Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Kyung-Ja (Business Support Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Junghoon (Department of Metallurgical Engineering, Pukyong National University)
  • 투고 : 2021.04.14
  • 심사 : 2021.04.28
  • 발행 : 2021.04.30

초록

Surface modification technique enabling the control of condensation provides various benefit in various engineering systems, such as heat transfer, desalination, power plants, and so on. In this study, lubricant oil-impregnation into Teflon-coated nanoporous anodic oxide layer of aluminum to enhance a de-wetting and mobility of water droplet on surface. Due to the surface treatment improving water-repellency, the condensation mode is changed to dropwise, thus the frequency of sliding condensed water droplet on surface is increased. For these reasons, the surface of oil-impregnated Teflon-coated nanoporous anodic aluminum oxide shows significantly enhanced condensation heat transfer compared to bare aluminum surface. In addition, the porosity of anodic aluminum oxide affected the mobility of water droplet even with oil-impregnation and Teflon-coating, indicating that the optimization of porous structure of anodic oxide is required for maximizing the condensation heat transfer.

키워드

과제정보

이 논문은 부경대학교 자율창의학술연구비(2019년)에 의하여 연구되었음.

참고문헌

  1. X.-H. Ma, X.-D. Zhou, Z. Lan, L. Yi-Ming, Y. Zhang, International Journal of Heat and Mass Transfer, 51 (2008) 1728-1737. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.021
  2. K.-C. Park, P. Kim, A. Grinthal, N. He, D. Fox, J.C. Weaver, J. Aizenberg, Nature, 531 (2016) 78-82. https://doi.org/10.1038/nature16956
  3. Q. Baojin, Z. Li, X. Hong, S. Yan, Experimental Thermal and Fluid Science, 35 (2011) 211-218. https://doi.org/10.1016/j.expthermflusci.2010.09.003
  4. R. Enright, N. Miljkovic, J.L. Alvarado, K. Kim, J.W. Rose, Nanoscale and Microscale Thermophysical Engineering, 18 (2014) 223-250. https://doi.org/10.1080/15567265.2013.862889
  5. K. Rykaczewski, A.T. Paxson, M. Staymates, M.L. Walker, X. Sun, S. Anand, S. Srinivasan, G.H. McKinley, J. Chinn, J.H.J. Scott, Scientific Reports, 4 (2014) 4158. https://doi.org/10.1038/srep04158
  6. Q. Yi, M. Tian, W. Yan, X. Qu, X. Chen, Applied Thermal Engineering, 106 (2016) 13-21. https://doi.org/10.1016/j.applthermaleng.2016.05.134
  7. R. Wen, Q. Li, J. Wu, G. Wu, W. Wang, Y. Chen, X. Ma, D. Zhao, R. Yang, Nano Energy, 33 (2017) 177-183. https://doi.org/10.1016/j.nanoen.2017.01.018
  8. Y. Hou, M. Yu, X. Chen, Z. Wang, S. Yao, ACS Nano, 9 (2015) 71-81. https://doi.org/10.1021/nn505716b
  9. 이정훈, 한국표면공학회지, 51 (2018) 11-20. https://doi.org/10.5695/JKISE.2018.51.1.11
  10. J. Lee, Y. Jiang, F. Hizal, G.-H. Ban, S. Jun, C.-H. Choi, Journal of Colloid and Interface Science, 553 (2019) 734-745. https://doi.org/10.1016/j.jcis.2019.06.068
  11. J. Lee, S. Shin, Y. Jiang, C. Jeong, H.A. Stone, C.H. Choi, Advanced Functional Materials, 27 (2017) 1606040. https://doi.org/10.1002/adfm.201606040
  12. 정해창, 김왕렬, 정찬영, 이정훈, 한국표면공학회지, 52 (2019) 37-42. https://doi.org/10.5695/jkise.2019.52.1.37
  13. C. Jeong, J. Lee, K. Sheppard, C.-H. Choi, Langmuir, 31 (2015) 11040-11050. https://doi.org/10.1021/acs.langmuir.5b02392
  14. L. Zaraska, G.D. Sulka, M. Jaskula, Journal of Solid State Electrochemistry, 15 (2011) 2427-2436. https://doi.org/10.1007/s10008-011-1471-z
  15. J.D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R.E. Cohen, G.H. McKinley, K.K. Varanasi, Soft Matter, 9 (2013) 1772-1780. https://doi.org/10.1039/c2sm27032c
  16. T.-S. Wong, S.H. Kang, S.K. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Nature, 477 (2011) 443-447. https://doi.org/10.1038/nature10447
  17. J. Lee, Y. Kim, U. Jung, W. Chung, Materials Chemistry and Physics, 141 (2013) 680-685. https://doi.org/10.1016/j.matchemphys.2013.05.058
  18. J. Lee, D. Kim, C.-H. Choi, W. Chung, Nano Energy, 31 (2017) 504-513. https://doi.org/10.1016/j.nanoen.2016.12.007
  19. H. Tsuchiya, M. Tenjimbayashi, T. Moriya, R. Yoshikawa, K. Sasaki, R. Togasawa, T. Yamazaki, K. Manabe, S. Shiratori, Langmuir, 33 (2017) 8950-8960. https://doi.org/10.1021/acs.langmuir.7b01991
  20. B. Peng, X. Ma, Z. Lan, W. Xu, R. Wen, International Journal of Heat and Mass Transfer, 83 (2015) 27-38. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.069
  21. P.B. Weisensee, Y. Wang, H. Qian, D. Schultz, W.P. King, N. Miljkovic, International Journal of Heat and Mass Transfer, 109 (2017) 187-199. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.119