DOI QR코드

DOI QR Code

Recent Progress in Conductive Polymer-based Membranes

전도성 고분자 분리막의 최근 연구동향

  • Park, Shinyoung (Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 박신영 (연세대학교 언더우드국제대학 융합과학공학부 나노과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학)
  • Received : 2021.03.12
  • Accepted : 2021.04.23
  • Published : 2021.04.30

Abstract

The demand for clean water is virtually present in all modern human societies even as our society has developed increasingly more advanced and sophisticated technologies to improve human life. However, as global climate change begins to show more dramatic effects in many regions in the world, the demand for a cheap, effective way to treat wastewater or to remove harmful bacteria, microbes, viruses, and other solvents detrimental to human health has continued to remain present and remains as important as ever. Well-established synthetic membranes composed of polyaniline (PANI), polyvinylidene fluoride (PVDF), and others have been extensively studied to gather information regarding the characteristics and performance of the membrane, but recent studies have shown that making these synthetic membranes conductive to electrical current by doping the membrane with another material or incorporating conductive materials onto the surface of the membrane, such as allotropes of carbon, have shown to increase the performance of these membranes by allowing the adjustability of pore size, improving antifouling and making the antibacterial property better. In this review, modern electrically conductive membranes are compared to conventional membranes and their performance improvements under electric fields are discussed, as well as their potential in water filtration and wastewater treatment applications.

깨끗한 물에 대한 수요는 우리 사회가 인간의 삶을 개선하기 위해 점점 더 진보되고 수준 높은 기술을 개발함에도 불구하고 모든 현대 사회에 존재한다. 그러나 지구 기후 변화가 전 세계 여러 지역에서 더욱 극적인 영향을 미치기 시작하면서 폐수를 처리하거나 인체 건강에 해로운 박테리아, 미생물, 바이러스 및 기타 용매를 제거하기 위해 저렴하고 효과적인 방법에 대한 요구가 계속되고 있고 그 어느 때보다 중요하다. 폴리아닐린(PANI), 폴리(비닐리덴 플루오라이드)(PVDF) 등으로 구성되어 있는 합성막은 잘 구축되어 있고 막의 특성과 성능에 관한 정보를 수집하기 위해 광범위하게 연구되었지만 최근 연구에 따르면 이러한 합성막을 전류에 전도성 있게 만드는 것으로 나타났다. 다른 물질로 막을 도핑하거나 탄소 동소체와 같은 전도성 물질을 막 표면에 통합함으로써 기공 크기의 조정 가능성, 더 나은 방오성과 항균성을 허용함으로써 이러한 막의 성능을 증가시키는 것으로 나타났다. 본 총설에서는 현대의 전기 전도성 막을 기존 막과 비교하고 전기장 하에서의 성능 향상과 물여과 및 폐수 처리 응용 분야에서의 잠재력에 대해 논의한다.

Keywords

References

  1. G. Zhen, Y. Pan, X. Lu, Y.Y. Li, Z. Zhang, C. Niu, G. Kumar, T. Kobayashi, Y. Zhao, and K. Xu, "Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives", Renew. Sust. Energy Rev., 115, 109392 (2019).
  2. J. Lee, I. S. Kim, M. H. Hwang, and K. J. Chae, "Atomic layer deposition and electrospinning as membrane surface engineering methods for water treatment: A short review", Environ. Sci. Water Res. Technol., 6, 1765 (2020).
  3. S. P. Nunes, "Can fouling in membranes be ever defeated?", Curr. Opin. Chem. Eng., 28, 90 (2020). https://doi.org/10.1016/j.coche.2020.03.006
  4. M. H. O. Rashid and S. F. Ralph, "Carbon nanotube membranes: Synthesis, properties, and future filtration applications", Nanomaterials, 7, 99 (2017). https://doi.org/10.3390/nano7050099
  5. P. S. Goh, A. K. Zulhairun, A. F. Ismail, and N. Hilal, "Contemporary antibiofouling modifications of reverse osmosis desalination membrane: A review", Desalination, 468, 114072 (2019).
  6. W. S. Yun, S. I. Cheong, and J. W. Rhim, "Effect of ion exchange capacity on salt removal rate in membrane capacitive deionization process", Membr. J., 28, 332 (2018).
  7. P. Formoso, E. Pantuso, G. De Filpo, and F. P. Nicoletta, "Electro-conductive membranes for permeation enhancement and fouling mitigation: A short review", Membr. J., 7, 39 (2017).
  8. S. F. Anis, R. Hashaikeh, and N. Hilal, "Functional materials in desalination: A review", Desalination, 468, 114077 (2019).
  9. M. R. Ataabadi and A. H. Behroozi, "Improvement in microfiltration process of oily wastewater: A comprehensive review over two decades", J. Environ. Chem. Eng., 9, 104981 (2021).
  10. C. Thamaraiselvan, J. Wang, D. K. James, P. Narkhede, S. P. Singh, D. Jassby, J. M. Tour, and C. J. Arnusch, "Laser-induced graphene and carbon nanotubes as conductive carbon-based materials in environmental technology", Mater. Today, 34, 115 (2020). https://doi.org/10.1016/j.mattod.2019.08.014
  11. S. J. Han and J. S. Park, "Measurement technique of membrane fouling in processes utilizing ion-conducting polymer membranes", Membr. J., 27, 434 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.434
  12. C. Li, X. Guo, X. Wang, S. Fan, Q. Zhou, H. Shao, W. Hu, C. Li, L. Tong, R. R. Kumar, and J. Huang, "Membrane fouling mitigation by coupling applied electric field in membrane system: Configuration, mechanism and performance", Electrochim. Acta, 287, 124 (2018). https://doi.org/10.1016/j.electacta.2018.06.150
  13. H. E. Karahan, K. Goh, C. Zhang, E. Yang, C. Yildirim, C. Y. Chuah, M. G. Ahunbay, J. Lee, S. B. Tantekin-Ersolmaz, Y. Chen, and T. H. Bae, "MXene materials for designing advanced separation membranes", Adv. Mater., 32, 1906697 (2020). https://doi.org/10.1002/adma.201906697
  14. K. Roy, A. Mukherjee, N. R. Maddela, S. Chakraborty, B. Shen, M. Li, D. Du, Y. Peng, F. Lu, and L. C. Garcia Cruzatty, "Outlook on the bottleneck of carbon nanotube in desalination and membrane-based water treatment - A review", J. Environ. Chem. Eng., 8, 103572 (2020).
  15. K. Dutta and D. Rana, "Polythiophenes: An emerging class of promising water purifying materials", Eur. Polym. J., 116, 370 (2019).
  16. Z. Yang, X. H. Ma, and C. Y. Tang, "Recent development of novel membranes for desalination", Desalination, 434, 37 (2018). https://doi.org/10.1016/j.desal.2017.11.046
  17. M. Aslam, R. Ahmad, and J. Kim, "Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment", Sep. Purif. Technol., 206, 297 (2018). https://doi.org/10.1016/j.seppur.2018.06.004
  18. S. Yadav, H. Saleem, I. Ibrar, O. Naji, A. A. Hawari, A. A. Alanezi, S. J. Zaidi, A. Altaee, and J. Zhou, "Recent developments in forward osmosis membranes using carbon-based nanomaterials", Desalination, 482, 114375 (2020).
  19. E. Eray, V. M. Candelario, V. Boffa, H. Safafar, D. N. ostedgaard-Munck, N. Zahrtmann, H. Kadrispahic, and M. K. Jorgensen, "A roadmap for the development and applications of silicon carbide membranes for liquid filtration: Recent advancements, challenges, and perspectives", Chem. Eng. J., 414, 128826 (2021).
  20. S. Leaper, A. Abdel-Karim, and P. Gorgojo, "The use of carbon nanomaterials in membrane distillation membranes: A review", Front. Chem. Sci. Eng. (2021).
  21. X. Tan, C. Hu, Z. Zhu, H. Liu, and J. Qu, "Electrically pore-size-tunable polypyrrole membrane for antifouling and selective separation", Adv. Funct. Mater., 29, 1903081 (2019). https://doi.org/10.1002/adfm.201903081
  22. J. Liu, C. Tian, J. Xiong, B. Gao, S. Dong, and L. Wang, "Polypyrrole vapor phase polymerization on PVDF membrane surface for conductive membrane preparation and fouling mitigation", J. Chem. Technol. Biotechnol., 93, 683 (2018).
  23. J. Liu, C. Tian, J. Xiong, and L. Wang, "Polypyrrole blending modification for PVDF conductive membrane preparing and fouling mitigation", J. Colloid Interface Sci., 494, 124 (2017). https://doi.org/10.1016/j.jcis.2017.01.078
  24. M. Mukherjee and S. De, "Robust self-cleaning polypyrrole-polysulfone blend hollow fiber membrane for biofouling mitigation", J. Chem. Technol. Biotechnol., 93, 3185 (2018).
  25. M. R. Mahdavi, M. Delnavaz, V. Vatanpour, and J. Farahbakhsh, "Effect of blending polypyrrole coated multiwalled carbon nanotube on desalination performance and antifouling property of thin film nanocomposite nanofiltration membranes", Sep. Purif. Technol., 184, 119 (2017). https://doi.org/10.1016/j.seppur.2017.04.037
  26. Z. Y. Guo, X. S. Yuan, H. Z. Geng, L. D. Wang, L. C. Jing, and Z. Z. Gu, "High conductive PPy-CNT surface-modified PES membrane with anti-fouling property", Appl. Nanosci. (Switzerland), 8, 1597 (2018). https://doi.org/10.1007/s13204-018-0826-5
  27. L. L. Xu, S. Shahid, D. A. Patterson, and E. A. C. Emanuelsson, "Flexible electro-responsive in-situ polymer acid doped polyaniline membranes for permeation enhancement and membrane fouling removal", J. Membr. Sci., 578, 263 (2019). https://doi.org/10.1016/j.memsci.2018.09.070
  28. K. Wang, L. Xu, K. Li, L. Liu, Y. Zhang, and J. Wang, "Development of polyaniline conductive membrane for electrically enhanced membrane fouling mitigation", J. Membr. Sci., 371, 570 (2019).
  29. B. Jiang, B. Wang, L. Zhang, Y. Sun, X. Xiao, N. Yang, and H. Dou, "Improvement of antifouling performance of poly(l-lactic acid) membranes through incorporating polyaniline nanoparticles", J. Appl. Polym. Sci., 134, 44452 (2017).
  30. W. Duan, A. Ronen, S. Walker, and D. Jassby, "Polyaniline-coated carbon nanotube ultrafiltration membranes: Enhanced anodic stability for in situ cleaning and electro-oxidation processes", ACS Appl. Mater. Interfaces, 8, 22574 (2016).
  31. B. Li, D. Sun, B. Li, W. Tang, P. Ren, J. Yu, and J. Zhang, "One-step electrochemically prepared graphene/polyaniline conductive filter membrane for permeation enhancement by fouling mitigation", Langmuir, 36, 2209 (2020). https://doi.org/10.1021/acs.langmuir.9b03114
  32. Y. Wang, H. Jia, J. Wang, B. Cheng, G. Yang, and F. Gao, "Impacts of energy distribution and electric field on membrane fouling control in microbial fuel cell-membrane bioreactor (MFC-MBR) coupling system", Bioresour. Technol., 269, 339 (2018). https://doi.org/10.1016/j.biortech.2018.08.122
  33. A. Ronen, W. Duan, I. Wheeldon, S. Walker, and D. Jassby, "Microbial attachment inhibition through low-voltage electrochemical reactions on electrically conducting membranes", Environ. Sci. Technol., 49, 12741 (2015). https://doi.org/10.1021/acs.est.5b01281
  34. C. Li, X. Guo, X. Wang, S. Fan, Q. Zhou, H. Shao, W. Hu, C. Li, L. Tong, R. R. Kumar, and J. Huang, "Membrane fouling mitigation by coupling applied electric field in membrane system: Configuration, mechanism and performance", Electrochim. Acta, 287, 124 (2018). https://doi.org/10.1016/j.electacta.2018.06.150
  35. C. Hu, M. Li, J. Sun, R. Liu, H. Liu, and J. Qu, "NOM fouling resistance in response to electric field during electro-ultrafiltration: Significance of molecular polarity and weight", J. Colloid Interface Sci., 539, 11 (2019). https://doi.org/10.1016/j.jcis.2018.12.048
  36. A. Dudchenko, J. Rolf, K. Russell, W. Duan, and D. Jassby, "Organic fouling inhibition on electrically conducting carbon nanotube-polyvinyl alcohol composite ultrafiltration membranes", J. Membr. Sci., 468, 1 (2014). https://doi.org/10.1016/j.memsci.2014.05.041