차세대 태양전지 동향

  • 김병만 (울산과학기술원 화학과) ;
  • 임성준 (울산과학기술원 화학과) ;
  • 이정경 (울산과학기술원 화학과) ;
  • 손중건 (울산과학기술원 에너지 및 화학공학부) ;
  • 장형수 (울산과학기술원 에너지 및 화학공학부) ;
  • 김기환 (경상대학교 나노.신소재공학부) ;
  • 심재원 (고려대학교 전기전자공학부) ;
  • 기현철 (한국광기술원 광에너지연구센터) ;
  • 우한영 (고려대학교 화학과) ;
  • 김진영 (울산과학기술원 에너지 및 화학공학부) ;
  • 권태혁 (울산과학기술원 화학과)
  • Published : 2021.04.30

Abstract

Keywords

References

  1. OECD-OCDE, Medium-Term Gas Market Report 2015, OECD Publishing; International Energy Agency, Paris, France, 2015.
  2. J. Goldemberg, World Energy Assessment: Energy and the challenge of sustainability, United Nations Pubns, New York, USA, 2000.
  3. H. Tian, G. Boschloo, A. Hagfeldt, Molecular devices for solar energy conversion and storage, Springer, 2018.
  4. J. Jean, P. R. Brown, Emerging Photovoltaic Technologies, 1st ed., IOP Publishing, Bristol, England, 2020.
  5. B. Oregan, M. Gratzel, Nature 1991, 353, 737-740. https://doi.org/10.1038/353737a0
  6. L. M. Goncalves, V. D. Bermudez, H. A. Ribeiro, A. M. Mendes, Energy Environ. Sci. 2008, 1, 655-667. https://doi.org/10.1039/b807236a
  7. A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595-6663. https://doi.org/10.1021/cr900356p
  8. B. E. Hardin, H. J. Snaith, M. D. McGehee, Nat. Photonics 2012, 6, 162-169. https://doi.org/10.1038/nphoton.2012.22
  9. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, M. Hanaya, Chem. Commun. 2015, 51, 15894-15897. https://doi.org/10.1039/c5cc06759f
  10. J. M. Ji, H. R. Zhou, Y. K. Eom, C. H. Kim, H. K. Kim, Adv. Energy Mater. 2020, 10, 2000124. https://doi.org/10.1002/aenm.202000124
  11. A. Fakharuddin, R. Jose, T. M. Brown, F. Fabregat-Santiago, J. Bisquert, Energy Environ. Sci. 2014, 7, 3952-3981.
  12. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc. 1993, 115, 6382-6390. https://doi.org/10.1021/ja00067a063
  13. M. K. Nazeeruddin, S. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Gratzel, Inorg. Chem. 1999, 38, 6298-6305. https://doi.org/10.1021/ic990916a
  14. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, J. Am. Chem. Soc. 2001, 123, 1613-1624. https://doi.org/10.1021/ja003299u
  15. P. Wang, B. Wenger, R. Humphry-Baker, J.-E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin, M. Gratzel, J. Am. Chem. Soc. 2005, 127, 6850-6856. https://doi.org/10.1021/ja042232u
  16. A. Mishra, M. K. Fischer, P. Bauerle, Angewandte Chemie International Edition 2009, 48, 2474-2499. https://doi.org/10.1002/anie.200804709
  17. P. Brogdon, H. Cheema, J. H. Delcamp, ChemSusChem 2018, 11, 86-103. https://doi.org/10.1002/cssc.201701441
  18. J.-M. Ji, H. Zhou, H. K. Kim, J. Mater. Chem. A 2018, 6, 14518-14545. https://doi.org/10.1039/c8ta02281j
  19. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, M. Gratzel, Nat. Chem. 2014, 6, 242-247. https://doi.org/10.1038/nchem.1861
  20. Y. Ren, D. Sun, Y. Cao, H. N. Tsao, Y. Yuan, S. M. Zakeeruddin, P. Wang, M. Gratzel, J. Am. Chem. Soc. 2018, 140, 2405-2408. https://doi.org/10.1021/jacs.7b12348
  21. H. Wu, J. Zhang, Y. Ren, Y. Zhang, Y. Yuan, Z. Shen, S. Li, P. Wang, ACS Applied Energy Materials 2020, 3, 4549-4558. https://doi.org/10.1021/acsaem.0c00216
  22. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Science 2011, 334, 629-634. https://doi.org/10.1126/science.1209688
  23. K. Zeng, Z. Tong, L. Ma, W.-H. Zhu, W. Wu, Y. Xie, Energy Environ. Sci. 2020, 13, 1617-1657. https://doi.org/10.1039/c9ee04200h
  24. Y. Ren, Y. Cao, D. Zhang, S. M. Zakeeruddin, A. Hagfeldt, P. Wang, M. Gratzel, Adv. Mater. 2020, 32, 2000193. https://doi.org/10.1002/adma.202000193
  25. Q. Huaulme, V. M. Mwalukuku, D. Joly, J. Liotier, Y. Kervella, P. Maldivi, S. Narbey, F. Oswald, A. J. Riquelme, J. A. Anta, Nature Energy 2020, 5, 468-477. https://doi.org/10.1038/s41560-020-0624-7
  26. F. L. Guo, Z. Q. Li, X. P. Liu, L. Zhou, F. T. Kong, W. C. Chen, S. Y. Dai, Adv. Funct. Mater. 2016, 26, 5733-5740. https://doi.org/10.1002/adfm.201601305
  27. T. Higashino, S. Nimura, K. Sugiura, Y. Kurumisawa, Y. Tsuji, H. Imahori, ACS omega 2017, 2, 6958-6967. https://doi.org/10.1021/acsomega.7b01290
  28. T. Higashino, H. Iiyama, Y. Kurumisawa, H. Imahori, Chemphyschem 2019, 20, 2689-2695. https://doi.org/10.1002/cphc.201900342
  29. T. Higashino, Y. Fujimori, K. Sugiura, Y. Tsuji, S. Ito, H. Imahori, Angewandte Chemie 2015, 127, 9180-9184. https://doi.org/10.1002/ange.201502951
  30. J.-H. Park, U.-Y. Kim, B.-M. Kim, W.-H. Kim, D.-H. Roh, J. S. Kim, T.-H. Kwon, ACS Applied Energy Materials 2019, 2, 4674-4682. https://doi.org/10.1021/acsaem.8b02100
  31. X. Wang, Z. Li, J. Shi, Y. Yu, Chem. Rev. 2014, 114, 9346-9384. https://doi.org/10.1021/cr400633s
  32. K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano Lett. 2007, 7, 69-74. https://doi.org/10.1021/nl062000o
  33. J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, A. B. Walker, J. Am. Chem. Soc. 2008, 130, 13364-13372. https://doi.org/10.1021/ja804852z
  34. X. Sheng, T. Xu, X. Feng, Adv. Mater. 2019, 31, 1805132. https://doi.org/10.1002/adma.201805132
  35. S. So, I. Hwang, J. Yoo, S. Mohajernia, M. Mackovic, E. Spiecker, G. Cha, A. Mazare, P. Schmuki, Adv. Energy Mater. 2018, 8, 1800981. https://doi.org/10.1002/aenm.201800981
  36. W.-Q. Wu, Y.-F. Xu, H.-S. Rao, C.-Y. Su, D.-B. Kuang, J. Am. Chem. Soc. 2014, 136, 6437-6445. https://doi.org/10.1021/ja5015635
  37. W.-Q. Wu, Y.-F. Xu, C.-Y. Su, D.-B. Kuang, Energy Environ. Sci. 2014, 7, 644-649. https://doi.org/10.1039/C3EE42167H
  38. G. Boschloo, A. Hagfeldt, Acc. Chem. Res. 2009, 42, 1819-1826. https://doi.org/10.1021/ar900138m
  39. J. H. Wu, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fan, G. G. Luo, Chem. Rev. 2015, 115, 2136-2173. https://doi.org/10.1021/cr400675m
  40. Z. Sun, M. Liang, J. Chen, Acc. Chem. Res. 2015, 48, 1541-1550.
  41. H. Iftikhar, G. G. Sonai, S. G. Hashmi, A. F. Nogueira, P. D. Lund, Materials 2019, 12, 1998. https://doi.org/10.3390/ma12121998
  42. Y. Cao, Y. Liu, S. M. Zakeeruddin, A. Hagfeldt, M. Gratzel, Joule 2018, 2, 1108-1117. https://doi.org/10.1016/j.joule.2018.03.017
  43. M. Freitag, Q. Daniel, M. Pazoki, K. Sveinbjornsson, J. Zhang, L. Sun, A. Hagfeldt, G. Boschloo, Energy Environ. Sci. 2015, 8, 2634-2637. https://doi.org/10.1039/C5EE01204J
  44. H. Michaels, M. Rinderle, R. Freitag, I. Benesperi, T. Edvinsson, R. Socher, A. Gagliardi, M. Freitag, Chem. Sci. 2020, 11, 2895-2906. https://doi.org/10.1039/c9sc06145b
  45. M. Kokkonen, P. Talebi, J. Zhou, S. Asgari, S. A. Soomro, F. Elsehrawy, J. Halme, S. Ahmad, A. Hagfeldt, S. G. Hashmi, J. Mater. Chem. A 2021, Advance Article.
  46. H. Ellis, N. Vlachopoulos, L. Haggman, C. Perruchot, M. Jouini, G. Boschloo, A. Hagfeldt, Electrochim. Acta 2013, 107, 45-51. https://doi.org/10.1016/j.electacta.2013.06.005
  47. M. Wu, X. Lin, Y. Wang, T. Ma, J. Mater. Chem. A 2015, 3, 19638-19656. https://doi.org/10.1039/C5TA03682H
  48. G. R. Li, X. P. Gao, Adv. Mater. 2020, 32, 1806478. https://doi.org/10.1002/adma.201806478
  49. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, V. Pellegrini, Science 2015, 347.
  50. I.-P. Liu, Y.-C. Hou, C.-W. Li, Y.-L. Lee, J. Mater. Chem. A 2017, 5, 240-249. https://doi.org/10.1039/C6TA08818J
  51. L. Kavan, J.-H. Yum, M. Gratzel, Nano Lett. 2011, 11, 5501-5506. https://doi.org/10.1021/nl203329c
  52. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, M. Gratzel, Nat. Chem. 2014, 6, 242-247. https://doi.org/10.1038/nchem.1861
  53. L. Kavan, Y. Saygili, M. Freitag, S. M. Zakeeruddin, A. Hagfeldt, M. Gratzel, Electrochim. Acta 2017, 227, 194-202. https://doi.org/10.1016/j.electacta.2016.12.185
  54. M. J. Ju, I. Y. Jeon, J. C. Kim, K. Lim, H. J. Choi, S. M. Jung, I. T. Choi, Y. K. Eom, Y. J. Kwon, J. Ko, Adv. Mater. 2014, 26, 3055-3062. https://doi.org/10.1002/adma.201304986
  55. M. J. Ju, I.-Y. Jeon, H. M. Kim, J. I. Choi, S.-M. Jung, J.-M. Seo, I. T. Choi, S. H. Kang, H. S. Kim, M. J. Noh, Science advances 2016, 2, e1501459. https://doi.org/10.1126/sciadv.1501459
  56. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Nat. Nanotechnol. 2010, 5, 574-578. https://doi.org/10.1038/nnano.2010.132
  57. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050-6051. https://doi.org/10.1021/ja809598r
  58. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, Sci. Rep. 2012, 2, 1-7.
  59. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897-903. https://doi.org/10.1038/nmat4014
  60. M. Mozaffari, A. Behjat, B. F. Mirjalili, Sol. Energy 2018, 174, 780-785. https://doi.org/10.1016/j.solener.2018.09.067
  61. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, Science 2016, 354, 206-209. https://doi.org/10.1126/science.aah5557
  62. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, Science 2017, 356, 1376-1379. https://doi.org/10.1126/science.aan2301
  63. M. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, Joule 2019, 3, 2179-2192. https://doi.org/10.1016/j.joule.2019.06.014
  64. J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C. S. Moon, N. J. Jeon, J.-P. Correa-Baena, V. Bulovic, S. S. Shin, M. G. Bawendi, J. Seo, Nature 2021, 590, 587-593.
  65. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Gratzel, J. Y. Kim, Nature 2021, 592, 381-385.
  66. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460-466. https://doi.org/10.1038/s41566-019-0398-2
  67. M. Kim, I.-w. Choi, S. J. Choi, J. W. Song, S.-I. Mo, J.-H. An, Y. Jo, S. Ahn, S. K. Ahn, G.-H. Kim, Joule 2021, 5, 659-672.
  68. R. Kour, S. Arya, S. Verma, J. Gupta, P. Bandhoria, V. Bharti, R. Datt, V. Gupta, Global Challenges 2019, 3, 1900050.
  69. K. Nishimura, M. A. Kamarudin, D. Hirotani, K. Hamada, Q. Shen, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, Nano Energy 2020, 74, 104858. https://doi.org/10.1016/j.nanoen.2020.104858
  70. M. Jeong, I. W. Choi, E. M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H. W. Choi, J. Lee, Science 2020, 369, 1615-1620. https://doi.org/10.1126/science.abb7167
  71. E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, J. Seo, Nature 2019, 567, 511-515. https://doi.org/10.1038/s41586-019-1036-3
  72. D. Kim, H. J. Jung, I. J. Park, B. W. Larson, S. P. Dunfield, C. Xiao, J. Kim, J. Tong, P. Boonmongkolras, S. G. Ji, Science 2020, 368, 155-160.
  73. D. P. McMeekin, S. Mahesh, N. K. Noel, M. T. Klug, J. Lim, J. H. Warby, J. M. Ball, L. M. Herz, M. B. Johnston, H. J. Snaith, Joule 2019, 3, 387-401. https://doi.org/10.1016/j.joule.2019.01.007
  74. Z. Li, S. Wu, J. Zhang, K. C. Lee, H. Lei, F. Lin, Z. Wang, Z. Zhu, A. K. Jen, Adv. Energy Mater. 2020, 10, 2000361. https://doi.org/10.1002/aenm.202000361
  75. Q. An, J. Wang, X. Ma, J. Gao, Z. Hu, B. Liu, H. Sun, X. Guo, X. Zhang, F. Zhang, Energy Environ. Sci. 2020, 13, 5039-5047.
  76. C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Energy Environ. Sci. 2020, 13, 2459-2466.
  77. L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Y. Jen, Y. Li, Adv. Mater. 2020, 32, 1907604. https://doi.org/10.1002/adma.201907604
  78. Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, Joule 2020, 4, 1236-1247.
  79. Q. Li, L.-M. Wang, S. Liu, L. Guo, S. Dong, G. Ma, Z. Cao, X. Zhan, X. Gu, T. Zhu, ACS Energy Letters 2020, 5, 3637-3646. https://doi.org/10.1021/acsenergylett.0c01927
  80. Y. Lin, M. I. Nugraha, Y. Firdaus, A. D. Scaccabarozzi, F. Anies, A.-H. Emwas, E. Yengel, X. Zheng, J. Liu, W. Wahyudi, ACS Energy Letters 2020, 5, 3663-3671. https://doi.org/10.1021/acsenergylett.0c01949
  81. M. H. Elsayed, B.-H. Jiang, P.-Y. Chang, Y.-P. Wang, Y.-C. Chiu, R.-J. Jeng, H.-H. Chou, C.-P. Chen, J. Mater. Chem. A 2021, https://doi.org/10.1039/D1TA00796C.
  82. R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, Joule 2020, 4, 407-419. https://doi.org/10.1016/j.joule.2019.12.004
  83. L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, Adv. Mater. 2019, 31, 1903441. https://doi.org/10.1002/adma.201903441
  84. C. Zhu, Z. Li, W. Zhong, F. Peng, Z. Zeng, L. Ying, F. Huang, Y. Cao, Chem. Commun. 2021, 57, 935-938.
  85. S. Dong, T. Jia, K. Zhang, J. Jing, F. Huang, Joule 2020, 4, 2004-2016.
  86. S. Wang, J. Chen, L. Li, L. Zuo, T.-Y. Qu, H. Ren, Y. Li, A. K.-Y. Jen, J.-X. Tang, ACS Nano 2020, 14, 5998-6006. https://doi.org/10.1021/acsnano.0c01517
  87. X. Li, R. Xia, K. Yan, J. Ren, H.-L. Yip, C.-Z. Li, H. Chen, ACS Energy Letters 2020, 5, 3115-3123. https://doi.org/10.1021/acsenergylett.0c01554
  88. N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y. R. Jo, B. J. Kim, K. Lee, Adv. Mater. 2014, 26, 2268-2272. https://doi.org/10.1002/adma.201304611
  89. W. Song, X. Fan, B. Xu, F. Yan, H. Cui, Q. Wei, R. Peng, L. Hong, J. Huang, Z. Ge, Adv. Mater. 2018, 30, 1800075. https://doi.org/10.1002/adma.201800075
  90. T. Yan, W. Song, J. Huang, R. Peng, L. Huang, Z. Ge, Adv. Mater. 2019, 31, 1902210. https://doi.org/10.1002/adma.201902210
  91. D. Koo, S. Jung, J. Seo, G. Jeong, Y. Choi, J. Lee, S. M. Lee, Y. Cho, M. Jeong, J. Lee, Joule 2020, 4, 1021-1034. https://doi.org/10.1016/j.joule.2020.02.012
  92. O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, M. C. Beard, Science 2011, 334, 1530-1533. https://doi.org/10.1126/science.1209845
  93. W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510-519. https://doi.org/10.1063/1.1736034
  94. A. Sahu, A. Garg, A. Dixit, Sol. Energy 2020, 203, 210-239. https://doi.org/10.1016/j.solener.2020.04.044
  95. E. H. Sargent, Nat. Photonics 2012, 6, 133-135. https://doi.org/10.1038/nphoton.2012.33
  96. G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, E. H. Sargent, Chem. Rev. 2015, 115, 12732-12763. https://doi.org/10.1021/acs.chemrev.5b00063
  97. Z. Pan, H. Rao, I. Mora-Sero, J. Bisquert, X. Zhong, Chem. Soc. Rev. 2018, 47, 7659-7702. https://doi.org/10.1039/c8cs00431e
  98. K. Ji, J. Yuan, F. Li, Y. Shi, X. Ling, X. Zhang, Y. Zhang, H. Lu, J. Yuan, W. Ma, J. Mater. Chem. A 2020, 8, 8104-8112. https://doi.org/10.1039/d0ta02743j
  99. B. D. Chernomordik, A. R. Marshall, G. F. Pach, J. M. Luther, M. C. Beard, Chem. Mater. 2017, 29, 189-198. https://doi.org/10.1021/acs.chemmater.6b02939
  100. J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, Nat. Mater. 2011, 10, 765-771. https://doi.org/10.1038/nmat3118
  101. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, E. H. Sargent, Nat. Nanotechnol. 2012, 7, 577-582. https://doi.org/10.1038/nnano.2012.127
  102. C.-H. M. Chuang, P. R. Brown, V. Bulovic, M. G. Bawendi, Nat. Mater. 2014, 13, 796-801. https://doi.org/10.1038/nmat3984
  103. Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.-J. Xue, M. Luo, Y. Cao, Y. Cheng, E. H. Sargent, J. Tang, Nat. Photonics 2015, 9, 409-415. https://doi.org/10.1038/nphoton.2015.78
  104. A. L. Weaver, D. R. Gamelin, J. Am. Chem. Soc. 2012, 134, 6819-6825.
  105. H. Zhu, N. Song, T. Lian, J. Am. Chem. Soc. 2013, 135, 11461-11464. https://doi.org/10.1021/ja405026x
  106. A. Puntambekar, Q. Wang, L. Miller, N. Smieszek, V. Chakrapani, ACS Nano 2016, 10, 10988-10999. https://doi.org/10.1021/acsnano.6b05779
  107. N. Zhao, T. P. Osedach, L.-Y. Chang, S. M. Geyer, D. Wanger, M. T. Binda, A. C. Arango, M. G. Bawendi, V. Bulovic, ACS Nano 2010, 4, 3743-3752.
  108. M.-J. Choi, J. Oh, J.-K. Yoo, J. Choi, D. M. Sim, Y. S. Jung, Energy Environ. Sci. 2014, 7, 3052-3060. https://doi.org/10.1039/C4EE00502C
  109. X. Lan, S. Masala, E. H. Sargent, Nat. Mater. 2014, 13, 233-240. https://doi.org/10.1038/nmat3816
  110. Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun, Adv. Mater. 2015, 27, 7101-7108. https://doi.org/10.1002/adma.201503573
  111. A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Science 2016, 354, 92-95. https://doi.org/10.1126/science.aag2700
  112. Y. Wang, J. Yuan, X. Zhang, X. Ling, B. W. Larson, Q. Zhao, Y. Yang, Y. Shi, J. M. Luther, W. Ma, Adv. Mater. 2020, 32, 2000449. https://doi.org/10.1002/adma.202000449
  113. L. Hu, Q. Zhao, S. Huang, J. Zheng, X. Guan, R. Patterson, J. Kim, L. Shi, C.-H. Lin, Q. Lei, D. Chu, W. Tao, S. Cheong, R. D. Tilley, A. W. Y. Ho-Baillie, J. M. Luther, J. Yuan, T. Wu, Nat. Commun. 2021, 12, 466.
  114. J. Chen, D. Jia, E. M. J. Johansson, A. Hagfeldt, X. Zhang, Energy Environ. Sci. 2021, 14, 224-261.
  115. I. Mathews, S. N. Kantareddy, T. Buonassisi, I. M. Peters, Joule 2019, 3, 1415-1426.
  116. M. Li, F. Igbari, Z.-K. Wang, L.-S. Liao, Adv. Energy Mater. 2020, 10, 2000641.
  117. M. A. Saeed, S. H. Kim, H. Kim, J. Liang, H. Y. Woo, T. G. Kim, H. Yan, J. W. Shim, Adv. Energy Mater. 2021, https://doi.org/10.1002/aenm.202003103.
  118. M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J.-E. Moser, M. Gratzel, A. Hagfeldt, Nat. Photonics 2017, 11, 372-378. https://doi.org/10.1038/nphoton.2017.60
  119. X. Hou, Y. Wang, H. K. H. Lee, R. Datt, N. Uslar Miano, D. Yan, M. Li, F. Zhu, B. Hou, W. C. Tsoi, Z. Li, J. Mater. Chem. A 2020, 8, 21503-21525. https://doi.org/10.1039/d0ta06950g
  120. Y.-J. You, C. E. Song, Q. V. Hoang, Y. Kang, J. S. Goo, D.-H. Ko, J.-J. Lee, W. S. Shin, J. W. Shim, Adv. Funct. Mater. 2019, 29, 1901171. https://doi.org/10.1002/adfm.201901171
  121. J. W. Lim, H. Kwon, S. H. Kim, Y.-J. You, J. S. Goo, D.-H. Ko, H. J. Lee, D. Kim, I. Chung, T. G. Kim, D. H. Kim, J. W. Shim, Nano Energy 2020, 75, 104984. https://doi.org/10.1016/j.nanoen.2020.104984
  122. L.-K. Ma, Y. Chen, P. C. Y. Chow, G. Zhang, J. Huang, C. Ma, J. Zhang, H. Yin, A. M. Hong Cheung, K. S. Wong, S. K. So, H. Yan, Joule 2020, 4, 1486-1500.
  123. A. Hauch, A. Georg, U. O. Krasovec, B. Orel, J. Electrochem. Soc. 2002, 149, A1208. https://doi.org/10.1149/1.1500346
  124. H. Nagai, H. Segawa, Chem. Commun. 2004, 10.1039/B400439F, 974-975.
  125. W. Guo, X. Xue, S. Wang, C. Lin, Z. L. Wang, Nano Lett. 2012, 12, 2520-2523. https://doi.org/10.1021/nl3007159
  126. H. Sun, X. You, J. Deng, X. Chen, Z. Yang, P. Chen, X. Fang, H. Peng, Angewandte Chemie International Edition 2014, 53, 6664-6668. https://doi.org/10.1002/anie.201403168
  127. M. Yu, W. D. McCulloch, D. R. Beauchamp, Z. Huang, X. Ren, Y. Wu, J. Am. Chem. Soc. 2015, 137, 8332-8335. https://doi.org/10.1021/jacs.5b03626
  128. M. A. Mahmoudzadeh, A. R. Usgaocar, J. Giorgio, D. L. Officer, G. G. Wallace, J. D. W. Madden, J. Mater. Chem. A 2016, 4, 3446-3452. https://doi.org/10.1039/C5TA08618C
  129. B. D. Sherman, M. V. Sheridan, K.-R. Wee, S. L. Marquard, D. Wang, L. Alibabaei, D. L. Ashford, T. J. Meyer, J. Am. Chem. Soc. 2016, 138, 16745-16753. https://doi.org/10.1021/jacs.6b10699
  130. M. D. Brady, R. N. Sampaio, D. Wang, T. J. Meyer, G. J. Meyer, J. Am. Chem. Soc. 2017, 139, 15612-15615. https://doi.org/10.1021/jacs.7b09367
  131. B. Lei, G.-R. Li, P. Chen, X.-P. Gao, Nano Energy 2017, 38, 257-262. https://doi.org/10.1016/j.nanoen.2017.06.001
  132. Q. Li, Y. Liu, S. Guo, H. Zhou, Nano Today 2017, 16, 46-60. https://doi.org/10.1016/j.nantod.2017.08.007
  133. A. Paolella, A. Vijh, A. Guerfi, K. Zaghib, C. Faure, J. Electrochem. Soc. 2020, 167, 120545. https://doi.org/10.1149/1945-7111/abb178
  134. B.-M. Kim, M.-H. Lee, V. S. Dilimon, J. S. Kim, J. S. Nam, Y.-G. Cho, H. K. Noh, D.-H. Roh, T.-H. Kwon, H.-K. Song, Energy Environ. Sci. 2020, 13, 1473-1480.
  135. M.-H. Lee, B.-M. Kim, Y. Lee, H.-G. Han, M. Cho, T.-H. Kwon, H.-K. Song, ACS Energy Letters 2021, 6, 1198-1204. https://doi.org/10.1021/acsenergylett.0c02473