DOI QR코드

DOI QR Code

Deep Level Defect Transient Spectroscopy Analysis of 4H-SiC SBD and JBS Diodes

4H-SiC SBD와 JBS 소자의 Deep Level Defect 비교 분석

  • Byun, Dong-Wook (Department of Electronic Materials Engineering, Kwang-woon University) ;
  • Shin, Myeong-Cheol (Department of Electronic Materials Engineering, Kwang-woon University) ;
  • Moon, Jeong Hyun (Power Semiconductor Research Center, Korean Electrotechnology Research Institute (KERI)) ;
  • Bahng, Wook (Power Semiconductor Research Center, Korean Electrotechnology Research Institute (KERI)) ;
  • Shin, Weon Ho (Department of Electronic Materials Engineering, Kwang-woon University) ;
  • Oh, Jong-Min (Department of Electronic Materials Engineering, Kwang-woon University) ;
  • Park, Chulhwan (Department of Chemical Engineering, Kwang-woon University) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwang-woon University)
  • 변동욱 (광운대학교 전자재료공학과) ;
  • 신명철 (광운대학교 전자재료공학과) ;
  • 문정현 (한국전기연구원 전력반도체연구센터) ;
  • 방욱 (한국전기연구원 전력반도체연구센터) ;
  • 신원호 (광운대학교 전자재료공학과) ;
  • 오종민 (광운대학교 전자재료공학과) ;
  • 박철환 (광운대학교 화학공학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Received : 2021.03.11
  • Accepted : 2021.03.31
  • Published : 2021.05.01

Abstract

We investigated deep levels in n-type 4H-SiC epitaxy layer of the Schottky barrier diodes (SBD) and Junction Barrier Schottky (JBS) diodes by using deep level transient spectroscopy (DLTS). The I-V characteristics of the JBS devices show ~100 times lower leakage current level than SBDs owing to the grid structures in JBS. The reliable responses of the diodes for deep level transient analysis showed from C-V characteristics. Several deep electron traps were revealed by DLTS measurements in epitaxial layers in 4H-SiC. In both types of diodes, the peaks corresponding to shallow energy levels were observed with slightly different values of 0.132 eV for JBS and 0.186 eV for SBDs. The two remarkable deep level peaks (J2 and J3) have been obtained with 0.257 eV and 0.273 eV in JBS, and they were analyzed to have a similar trap concentration of ~1014 cm-3. The comparison results showed that the defects could be related with device fabrication procedures such as ion-implantation and growth.

Keywords

Acknowledgement

본 연구는 한국산업기술평가원의 지원(P0012451, 20003540) 및 2021년도 광운대학교 우수연구자 지원 사업에 의해 연구된 결과임을 밝힙니다.

References

  1. B. J. Baliga, J. Appl. Phys., 53, 1759 (1982). [DOI: https://doi.org/10.1063/1.331646]
  2. J. Yang, S. Ahn, F. Ren, S. J. Pearton, S. Jang, and A. Kuramata, IEEE Electron Device Lett., 38, 906 (2017). [DOI: https://doi.org/10.1109/LED.2017.2703609]
  3. K. M. Geib, C. Wilson, R. G. Long, and C. W. Wilmsen, J. Appl. Phys., 68, 2796 (1990). [DOI: https://doi.org/10.1063/1.346457]
  4. C. Zhang, S. Srdic, S. Lukic, Y. Kang, E. Choi, and E. Tafti, Proc. 2018 IEEE Energy Conversion Congress and Exposition (ECCE) (IEEE, Portland, USA, 2018) p. 3880. [DOI: https://doi.org/10.1109/ECCE.2018.8558373]
  5. Y. J. Lee, S. Cho, J. H. Seo, S. J. Min, J. I. An, J. M. Oh, S. M. Koo, and D. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 367 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.6.367]
  6. Y. Pan, L. Tian, H. Wu, Y. Li, and F. Yang, Microelectron. Eng., 181, 10 (2017). [DOI: https://doi.org/10.1016/j.mee.2017.05.054]
  7. W. Y. Son, M. C. Shin, M. Schweitz, S. K. Lee, and S. M. Koo, J. Nanoelectron. Optoelectron., 15, 777 (2020). [DOI: https://doi.org/10.1166/jno.2020.2818]
  8. S. Sasaki, K. Kawahara, G. Feng, G. Alfieri, and T. Kimoto, J. Appl. Phys., 109, 013705 (2011). [DOI: https://doi.org/10.1063/1.3528124]
  9. K. Kawahara, G. Alfieri, and T. Kimoto, J. Appl. Phys., 106, 013719 (2009). [DOI: https://doi.org/10.1063/1.3159901]
  10. S. J. Min, M. C. Shin, N. T. Nguyen, J. M. Oh, and S. M. Koo, Materials, 13, 445 (2020). [DOI: https://doi.org/10.3390/ma13020445]
  11. Y. D. Tang, X. Y. Liu, Z. D. Zhou, Y. Bai, and C. Z. Li, Chinese Phys. B, 28, 106101 (2019). [DOI: https://doi.org/10.1088/1674-1056/ab3cc2]
  12. T. Dalibor, G. Pensl, N. Nordell, and A. Schoner, Phys. Rev. B, 55, 13618 (1997). [DOI: https://doi.org/10.1103/PhysRevB.55.13618]
  13. T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W. J. Choyke, A. Schoner, and N. Nordell, Phys. Status Solidi A, 162, 199 (1997). [DOI: https://doi.org/10.1002/1521-396X(199707)162:1<199: AID-PSSA199>3.0.CO;2-0]
  14. L. Gelczuk, M. Dabrowska-Szata, M. Sochacki, and J. Szmidt, Solid-State Electron., 94, 56 (2014). [DOI: https://doi.org/10.1016/j.sse.2014.02.008]
  15. F. Fabbri, D. Natalini, A. Cavallini, T. Sekiguchi, R. Nipoti, and F. Moscatelli, Superlattices Microstruct., 45, 383 (2009). [DOI: https://doi.org/10.1016/j.spmi.2008.10.024]
  16. B. Zippelius, J. Suda, and T. Kimoto, J. Appl. Phys., 111, 033515 (2012). [DOI: https://doi.org/10.1063/1.3681806]