DOI QR코드

DOI QR Code

Nanometer-Scale Etching of Copper Thin Films Using High Density Plasma of Organic Chelator Material

유기 킬레이터 물질의 고밀도 플라즈마를 이용한 구리 박막의 나노미터 스케일 식각

  • Lee, Ji Soo (Department of Chemical Engineering, Inha University) ;
  • Lim, Eun Taek (Department of Chemical Engineering, Inha University) ;
  • Cha, Moon Hwan (Department of Chemical Engineering, Inha University) ;
  • Park, Sung Yong (Department of Chemical Engineering, Inha University) ;
  • Chung, Chee Won (Department of Chemical Engineering, Inha University)
  • Received : 2020.11.02
  • Accepted : 2021.01.06
  • Published : 2021.05.01

Abstract

Inductively coupled plasma reactive ion etching (ICP-RIE) of copper thin films patterned with SiO2 hard masks was carried out using piperidine/O2/Ar gas mixture. The etch rate, etch selectivity, and etch profile of copper thin films were investigated by varying gas concentration in piperidine/O2/Ar gas mixture. In addition, the etch parameters including ICP RF power, DC-bias voltage to substrate, and process pressure were varied to examine the etch characteristics. X-ray photoelectron spectroscopy and optical emission spectroscopy were employed to elucidate the etch mechanism under piperidine/O2/Ar gas chemistry. Finally, 150 nm-line patterned copper thin films were successfully etched using piperidine/O2/Ar etch gas under the optimized etch conditions.

Keywords

Acknowledgement

본 연구는 산업통상자원부(10080450)와 KSRC 지원사업인 미래반도체소자 원천기술개발사업의 연구결과로 수행되었고, 2021년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임.

References

  1. M. T. Bohr, Solid State Technol., 39, 105 (1996).
  2. B. Li, T. D. Sullivan, T. C. Lee, and D. Badami, Microelectron. Reliab., 44, 365 (2004). [DOI: https://doi.org/10.1016/j.microrel.2003.11.004]
  3. N. Awaya and Y. Arita, J. Electron. Mater., 21, 959 (1992). [DOI: https://doi.org/10.1007/BF02684203]
  4. A. Jain, T. T. Kodas, R. Jairath, and M. J. Hampden-Smith, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 11, 2107 (1993). [DOI: https://doi.org/10.1116/1.586550]
  5. S. P. Murarka and S. W. Hymes, Crit. Rev. Solid State Mater. Sci., 20, 87 (1995). [DOI: https://doi.org/10.1080/10408439508243732]
  6. S. Lee and Y. Kuo, J. Electrochem. Soc., 148, G524 (2001). [DOI: https://doi.org/10.1149/1.1392324]
  7. O. J. Kwon, S. K. Cho, and J. J. Kim, Korean Chem. Eng. Res., 47, 141 (2009).
  8. P. A. Tamirisa, G. Levitin, N. S. Kulkarni, and D. W. Hess, Microelectron. Eng., 84, 105 (2007). [DOI: https://doi.org/10.1016/j.mee.2006.08.012]
  9. S. Rakheja, S. C. Chang, and A. Naeemi, IEEE Trans. Electron Devices, 60, 3913 (2013). [DOI: https://doi.org/10.1109/TED.2013.2282615]
  10. K. Ohno, M. Sato, and Y. Arita, J. Electrochem. Soc., 143, 4089 (1996). [DOI: https://doi.org/10.1149/1.1837341]
  11. B. J. Howard and C. Steinbruchel, Appl. Phys. Lett., 59, 914 (1991). [DOI: https://doi.org/10.1063/1.106299]
  12. S. Lee and Y. Kuo, Thin Solid Films, 457, 326 (2004). [DOI: https://doi.org/10.1016/j.tsf.2003.10.011]
  13. F. Wu, G. Levitin, and D. Hess, ECS Trans., 33, 157 (2010). [DOI: https://doi.org/10.1149/1.3501042]
  14. E. T. Lim, J. S. Ryu, J. S. Choi, and C. W. Chung, Vacuum, 167, 145 (2019). [DOI: https://doi.org/10.1016/j.vacuum.2019.05.046]
  15. J. S. Ryu, E. T. Lim, J. S. Choi, and C. W. Chung, Thin Solid Films, 672, 55 (2019). [DOI: https://doi.org/10.1016/j.tsf.2018.12.042]
  16. M. H. Cha, E. T. Lim, S. Y. Park, J. S. Lee, and C. W. Chung, Vacuum, 181, 109421 (2020). [DOI: https://doi.org/10.1016/j.vacuum.2020.109421]
  17. M. C. Biesinger, Surf. Interface Anal., 49, 1325 (2017). [DOI: https://doi.org/10.1002/sia.6239]
  18. E. Cano, J. M. Bastidas, J. L. Polo, and N. Mora, J. Electrochem. Soc., 148, B431 (2001). [DOI: https://doi.org/10.1149/1.1404968]
  19. A. Cano, Y. Avila, M. Avila, and E. Reguera, J. Solid State Chem., 276, 339 (2019). [DOI: https://doi.org/10.1016/j.jssc.2019.05.021]
  20. G. C. Allen, F. Sorbello, C. Altavilla, A. Castorina, and E. Ciliberto, Thin Solid Films, 483, 306 (2005). [DOI: https://doi.org/10.1016/j.tsf.2004.12.062]
  21. G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (John Wiley & Sons, New York, 1992) p. 182.
  22. M. Barber, J. A. Connor, M. F. Guest, I. H. Hillier, M. Schwarz, and M. Stacey, J. Chem. Soc., Faraday Trans. 2, 69, 551 (1973). [DOI: https://doi.org/10.1039/F29736900551]
  23. S. S. Chang, H. J. Lee, and H. J. Park, Ceram. Int., 31, 411 (2005). [DOI: https://doi.org/10.1016/j.ceramint.2004.05.027]