Acknowledgement
We thank all the members of the Kim lab for discussion and helpful comments. We feel sorry for not citing the work of many other IPMK investigators owing to space constraints. This work was supported by KAIST Advanced Institute for Science-X Fellowship (to S.J.P.) and the National Research Foundation of Korea (NRF-2020R1I1A1A01073144 to S.J.P.; NRF-2020R1A2C3005765 to S.K.).
References
- Ahmed, I., Sbodio, J.I., Harraz, M.M., Tyagi, R., Grima, J.C., Albacarys, L.K., Hubbi, M.E., Xu, R., Kim, S., Paul, B.D., et al. (2015). Huntington's disease: neural dysfunction linked to inositol polyphosphate multikinase. Proc. Natl. Acad. Sci. U. S. A. 112, 9751-9756. https://doi.org/10.1073/pnas.1511810112
- Bang, S., Kim, S., Dailey, M.J., Chen, Y., Moran, T.H., Snyder, S.H., and Kim, S.F. (2012). AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase. Proc. Natl. Acad. Sci. U. S. A. 109, 616-620. https://doi.org/10.1073/pnas.1119751109
- Bechet, J., Greenson, M., and Wiame, J.M. (1970). Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. Eur. J. Biochem. 12, 31-39. https://doi.org/10.1111/j.1432-1033.1970.tb00817.x
- Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11-21. https://doi.org/10.1038/35036035
- Blind, R.D., Suzawa, M., and Ingraham, H.A. (2012). Direct modification and regulation of a nuclear receptor-PIP2 complex by the inositol lipid kinase IPMK. Sci. Signal. 5, ra44. https://doi.org/10.1126/scisignal.2003111
- Chakraborty, A., Kim, S., and Snyder, S.H. (2011). Inositol pyrophosphates as mammalian cell signals. Sci. Signal. 4, re1. https://doi.org/10.1126/scisignal.2001958
- Chen, D., Wang, Z., Zhao, Y.G., Zheng, H., Zhao, H., Liu, N., and Zhang, H. (2020). Inositol polyphosphate multikinase inhibits liquid-liquid phase separation of TFEB to negatively regulate autophagy activity. Dev. Cell 55, 588-602.e7. https://doi.org/10.1016/j.devcel.2020.10.010
- Dato, S., Crocco, P., De Rango, F., Iannone, F., Maletta, R., Bruni, A.C., Saiardi, A., Rose, G., and Passarino, G. (2021). IP6K3 and IPMK variations in LOAD and longevity: evidence for a multifaceted signaling network at the crossroad between neurodegeneration and survival. Mech. Ageing Dev. 195, 111439. https://doi.org/10.1016/j.mad.2021.111439
- De Rango, F., Crocco, P., Iannone, F., Saiardi, A., Passarino, G., Dato, S., and Rose, G. (2019). Inositol polyphosphate multikinase (IPMK), a gene coding for a potential moonlighting protein, contributes to human female longevity. Genes (Basel) 10, 125. https://doi.org/10.3390/genes10020125
- Desfougeres, Y., Wilson, M.S.C., Laha, D., Miller, G.J., and Saiardi, A. (2019). ITPK1 mediates the lipid-independent synthesis of inositol phosphates controlled by metabolism. Proc. Natl. Acad. Sci. U. S. A. 116, 24551-24561. https://doi.org/10.1073/pnas.1911431116
- Dick, R.A., Zadrozny, K.K., Xu, C., Schur, F., Lyddon, T.D., Ricana, C.L., Wagner, J.M., Perilla, J.R., Ganser-Pornillos, B.K., Johnson, M.C., et al. (2018). Inositol phosphates are assembly co-factors for HIV-1. Nature 560, 509-512. https://doi.org/10.1038/s41586-018-0396-4
- Dovey, C.M., Diep, J., Clarke, B.P., Hale, A.T., McNamara, D.E., Guo, H., Brown, N.W., Jr., Cao, J.Y., Grace, C.R., Gough, P.J., et al. (2018). MLKL requires the inositol phosphate code to execute necroptosis. Mol. Cell 70, 936-948.e7. https://doi.org/10.1016/j.molcel.2018.05.010
- Frederick, J.P., Mattiske, D., Wofford, J.A., Megosh, L.C., Drake, L.Y., Chiou, S.T., Hogan, B.L.M., and York, J.D. (2005). An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production. Proc. Natl. Acad. Sci. U. S. A. 102, 8454-8459. https://doi.org/10.1073/pnas.0503706102
- Fu, C., Tyagi, R., Chin, A.C., Rojas, T., Li, R.J., Guha, P., Bernstein, I.A., Rao, F., Xu, R., Cha, J.Y., et al. (2018). Inositol polyphosphate multikinase inhibits angiogenesis via inositol pentakisphosphate-induced HIF-1α degradation. Circ. Res. 122, 457-472. https://doi.org/10.1161/circresaha.117.311983
- Gu, C., Stashko, M.A., Puhl-Rubio, A.C., Chakraborty, M., Chakraborty, A., Frye, S.V., Pearce, K.H., Wang, X., Shears, S.B., and Wang, H. (2019). Inhibition of inositol polyphosphate kinases by quercetin and related flavonoids: a structure-activity analysis. J. Med. Chem. 62, 1443-1454. https://doi.org/10.1021/acs.jmedchem.8b01593
- Guha, P., Tyagi, R., Chowdhury, S., Reilly, L., Fu, C., Xu, R., Resnick, A.C., and Snyder, S.H. (2019). IPMK mediates activation of ULK signaling and transcriptional regulation of autophagy linked to liver inflammation and regeneration. Cell Rep. 26, 2692-2703.e7. https://doi.org/10.1016/j.celrep.2019.02.013
- Hatch, A.J., Odom, A.R., and York, J.D. (2017). Inositol phosphate multikinase dependent transcriptional control. Adv. Biol. Regul. 64, 9-19. https://doi.org/10.1016/j.jbior.2017.03.001
- Hatch, A.J. and York, J.D. (2010). SnapShot: inositol phosphates. Cell 143, 1030-1030.e1. https://doi.org/10.1016/j.cell.2010.11.045
- Holub, B.J. (1986). Metabolism and function of myo-inositol and inositol phospholipids. Annu. Rev. Nutr. 6, 563-597. https://doi.org/10.1146/annurev.nu.06.070186.003023
- Kim, E., Ahn, H., Kim, M.G., Lee, H., and Kim, S. (2017a). The expanding significance of inositol polyphosphate multikinase as a signaling hub. Mol. Cells 40, 315-321. https://doi.org/10.14348/molcells.2017.0066
- Kim, E., Beon, J., Lee, S., Park, S.J., Ahn, H., Kim, M.G., Park, J.E., Kim, W., Yuk, J.M., Kang, S.J., et al. (2017b). Inositol polyphosphate multikinase promotes Toll-like receptor-induced inflammation by stabilizing TRAF6. Sci. Adv. 3, e1602296. https://doi.org/10.1126/sciadv.1602296
- Kim, E., Tyagi, R., Lee, J.Y., Park, J., Kim, Y.R., Beon, J., Chen, P.Y., Cha, J.Y., Snyder, S.H., and Kim, S. (2013). Inositol polyphosphate multikinase is a coactivator for serum response factor-dependent induction of immediate early genes. Proc. Natl. Acad. Sci. U. S. A. 110, 19938-19943. https://doi.org/10.1073/pnas.1320171110
- Kim, J., Kundu, M., Viollet, B., and Guan, K.L. (2011a). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141. https://doi.org/10.1038/ncb2152
- Kim, S., Kim, S.F., Maag, D., Maxwell, M.J., Resnick, A.C., Juluri, K.R., Chakraborty, A., Koldobskiy, M.A., Cha, S.H., Barrow, R., et al. (2011b). Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase. Cell Metab. 13, 215-221. https://doi.org/10.1016/j.cmet.2011.01.007
- Kim, W., Kim, E., Min, H., Kim, M.G., Eisenbeis, V.B., Dutta, A.K., Pavlovic, I., Jessen, H.J., Kim, S., and Seong, R.H. (2019). Inositol polyphosphates promote T cell-independent humoral immunity via the regulation of Bruton's tyrosine kinase. Proc. Natl. Acad. Sci. U. S. A. 116, 12952-12957. https://doi.org/10.1073/pnas.1821552116
- Lee, B., Park, S.J., Lee, S., Park, S.E., Lee, E., Song, J.J., Byun, Y., and Kim, S. (2020a). Identification of the antidepressant vilazodone as an inhibitor of inositol polyphosphate multikinase by structure-based drug repositioning. Mol. Cells 43, 222-227. https://doi.org/10.14348/molcells.2020.0051
- Lee, S., Beon, J., Kim, M.G., and Kim, S. (2020b). Inositol polyphosphate multikinase in adipocytes is dispensable for regulating energy metabolism and whole body metabolic homeostasis. Am. J. Physiol. Endocrinol. Metab. 319, E401-E409. https://doi.org/10.1152/ajpendo.00030.2020
- Lee, S., Kim, M.G., Ahn, H., and Kim, S. (2020c). Inositol pyrophosphates: signaling molecules with pleiotropic actions in mammals. Molecules 25, 2208. https://doi.org/10.3390/molecules25092208
- Maag, D., Maxwell, M.J., Hardesty, D.A., Boucher, K.L., Choudhari, N., Hanno, A.G., Ma, J.F., Snowman, A.S., Pietropaoli, J.W., Xu, R., et al. (2011). Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB. Proc. Natl. Acad. Sci. U. S. A. 108, 1391-1396. https://doi.org/10.1073/pnas.1017831108
- Mallery, D.L., Faysal, K., Kleinpeter, A., Wilson, M., Vaysburd, M., Fletcher, A.J., Novikova, M., Bocking, T., Freed, E.O., Saiardi, A., et al. (2019). Cellular IP6 levels limit HIV production while viruses that cannot efficiently package IP6 are attenuated for infection and replication. Cell Rep. 29, 3983-3996.e4. https://doi.org/10.1016/j.celrep.2019.11.050
- McNamara, D.E., Dovey, C.M., Hale, A.T., Quarato, G., Grace, C.R., Guibao, C.D., Diep, J., Nourse, A., Cai, C.R., Wu, H., et al. (2019). Direct activation of human MLKL by a select repertoire of inositol phosphate metabolites. Cell Chem. Biol. 26, 863-877.e7. https://doi.org/10.1016/j.chembiol.2019.03.010
- Millard, C.J., Watson, P.J., Celardo, I., Gordiyenko, Y., Cowley, S.M., Robinson, C.V., Fairall, L., and Schwabe, J.W.R. (2013). Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell 51, 57-67.
- Najafov, A., Chen, H., and Yuan, J. (2017). Necroptosis and cancer. Trends Cancer 3, 294-301. https://doi.org/10.1016/j.trecan.2017.03.002
- Odom, A.R., Stahlberg, A., Wente, S.R., and York, J.D. (2000). A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287, 2026-2029. https://doi.org/10.1126/science.287.5460.2026
- Park, J., Longo, F., Park, S.J., Lee, S., Bae, M., Tyagi, R., Han, J.H., Kim, S., Santini, E., Klann, E., et al. (2019). Inositol polyphosphate multikinase mediates extinction of fear memory. Proc. Natl. Acad. Sci. U. S. A. 116, 2707-2712. https://doi.org/10.1073/pnas.1812771116
- Park, S.J., Lee, S., Park, S.E., and Kim, S. (2018). Inositol pyrophosphates as multifaceted metabolites in the regulation of mammalian signaling networks. Anim. Cells Syst. (Seoul) 22, 1-6. https://doi.org/10.1080/19768354.2017.1408684
- Pernicova, I. and Korbonits, M. (2014). Metformin - mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143-156. https://doi.org/10.1038/nrendo.2013.256
- Saiardi, A., Erdjument-Bromage, H., Snowman, A.M., Tempst, P., and Snyder, S.H. (1999). Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9, 1323-1326. https://doi.org/10.1016/S0960-9822(00)80055-X
- Seacrist, C.D. and Blind, R.D. (2018). Crystallographic and kinetic analyses of human IPMK reveal disordered domains modulate ATP binding and kinase activity. Sci. Rep. 8, 16672. https://doi.org/10.1038/s41598-018-34941-3
- Sei, Y., Zhao, X., Forbes, J., Szymczak, S., Li, Q., Trivedi, A., Voellinger, M., Joy, G., Feng, J., Whatley, M., et al. (2015). A hereditary form of small intestinal carcinoid associated with a germline mutation in inositol polyphosphate multikinase. Gastroenterology 149, 67-78. https://doi.org/10.1053/j.gastro.2015.04.008
- Shears, S.B. (2015). Inositol pyrophosphates: why so many phosphates? Adv. Biol. Regul. 57, 203-216. https://doi.org/10.1016/j.jbior.2014.09.015
- Sowd, G.A. and Aiken, C. (2021). Inositol phosphates promote HIV-1 assembly and maturation to facilitate viral spread in human CD4+ T cells. PLoS Pathog. 17, e1009190. https://doi.org/10.1371/journal.ppat.1009190
- Tu-Sekine, B., Padhi, A., Jin, S., Kalyan, S., Singh, K., Apperson, M., Kapania, R., Hur, S.C., Nain, A., and Kim, S.F. (2019). Inositol polyphosphate multikinase is a metformin target that regulates cell migration. FASEB J. 33, 14137-14146. https://doi.org/10.1096/fj.201900717RR
- Wang, Q., Vogan, E.M., Nocka, L.M., Rosen, C.E., Zorn, J.A., Harrison, S.C., and Kuriyan, J. (2015). Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate. Elife 4, e06074. https://doi.org/10.7554/eLife.06074
- Wang, Y.H., Hariharan, A., Bastianello, G., Toyama, Y., Shivashankar, G.V., Foiani, M., and Sheetz, M.P. (2017). DNA damage causes rapid accumulation of phosphoinositides for ATR signaling. Nat. Commun. 8, 2118. https://doi.org/10.1038/s41467-017-01805-9
- Watson, P., Fairall, L., Santos, G., and Schwabe, J. (2012). Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481, 335-340. https://doi.org/10.1038/nature10728
- Watson, P.J., Millard, C.J., Riley, A.M., Robertson, N.S., Wright, L.C., Godage, H.Y., Cowley, S.M., Jamieson, A.G., Potter, B.V.L., and Schwabe, J.W.R. (2016). Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat. Commun. 7, 11262. https://doi.org/10.1038/ncomms11262
- Wickramasinghe, V., Savill, J., Chavali, S., Jonsdottir, A., Rajendra, E., Gruner, T., Laskey, R., Babu, M.M., and Venkitaraman, A. (2013). Human inositol polyphosphate multikinase regulates transcriptselective nuclear mRNA export to preserve genome integrity. Mol. Cell 51, 737-750. https://doi.org/10.1016/j.molcel.2013.08.031
- Xu, R., Paul, B.D., Smith, D.R., Tyagi, R., Rao, F., Khan, A.B., Blech, D.J., Vandiver, M.S., Harraz, M.M., Guha, P., et al. (2013a). Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction. Proc. Natl. Acad. Sci. U. S. A. 110, 16181-16186. https://doi.org/10.1073/pnas.1315551110
- Xu, R., Sen, N., Paul, B.D., Snowman, A.M., Rao, F., Vandiver, M.S., Xu, J., and Snyder, S.H. (2013b). Inositol polyphosphate multikinase is a coactivator of p53-mediated transcription and cell death. Sci. Signal. 6, ra22. https://doi.org/10.1126/scisignal.2003405
- Yokoyama, J.S., Wang, Y., Schork, A.J., Thompson, W.K., Karch, C.M., Cruchaga, C., McEvoy, L.K., Witoelar, A., Chen, C.H., Holland, D., et al. (2016). Association between genetic traits for immunemediated diseases and alzheimer disease. JAMA Neurol. 73, 691-697. https://doi.org/10.1001/jamaneurol.2016.0150
- Zhu, Q., Ghoshal, S., Rodrigues, A., Gao, S., Asterian, A., Kamenecka, T.M., Barrow, J.C., and Chakraborty, A. (2016). Adipocyte-specific deletion of Ip6k1 reduces diet-induced obesity by enhancing AMPK-mediated thermogenesis. J. Clin. Invest. 126, 4273-4288. https://doi.org/10.1172/JCI85510
Cited by
- Myeloid IPMK promotes the resolution of serum transfer-induced arthritis in mice vol.25, pp.4, 2021, https://doi.org/10.1080/19768354.2021.1952305
- Inositol Phosphates and Retroviral Assembly: A Cellular Perspective vol.13, pp.12, 2021, https://doi.org/10.3390/v13122516