DOI QR코드

DOI QR Code

Inositol Polyphosphate Multikinase Signaling: Multifaceted Functions in Health and Disease

  • Lee, Boah (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Seung Ju (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Hong, Sehoon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Kyunghan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Seyun (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2021.02.25
  • Accepted : 2021.04.15
  • Published : 2021.04.30

Abstract

Inositol phosphates are water-soluble intracellular signaling molecules found in eukaryotes from yeasts to mammals, which are synthesized by a complex network of enzymes including inositol phosphate kinases. Among these, inositol polyphosphate multikinase (IPMK) is a promiscuous enzyme with broad substrate specificity, which phosphorylates multiple inositol phosphates, as well as phosphatidylinositol 4,5-bisphosphate. In addition to its catalytic actions, IPMK is known to non-catalytically control major signaling events via direct protein-protein interactions. In this review, we describe the general characteristics of IPMK, highlight its pleiotropic roles in various physiological and pathological conditions, and discuss future challenges in the field of IPMK signaling pathways.

Keywords

Acknowledgement

We thank all the members of the Kim lab for discussion and helpful comments. We feel sorry for not citing the work of many other IPMK investigators owing to space constraints. This work was supported by KAIST Advanced Institute for Science-X Fellowship (to S.J.P.) and the National Research Foundation of Korea (NRF-2020R1I1A1A01073144 to S.J.P.; NRF-2020R1A2C3005765 to S.K.).

References

  1. Ahmed, I., Sbodio, J.I., Harraz, M.M., Tyagi, R., Grima, J.C., Albacarys, L.K., Hubbi, M.E., Xu, R., Kim, S., Paul, B.D., et al. (2015). Huntington's disease: neural dysfunction linked to inositol polyphosphate multikinase. Proc. Natl. Acad. Sci. U. S. A. 112, 9751-9756. https://doi.org/10.1073/pnas.1511810112
  2. Bang, S., Kim, S., Dailey, M.J., Chen, Y., Moran, T.H., Snyder, S.H., and Kim, S.F. (2012). AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase. Proc. Natl. Acad. Sci. U. S. A. 109, 616-620. https://doi.org/10.1073/pnas.1119751109
  3. Bechet, J., Greenson, M., and Wiame, J.M. (1970). Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. Eur. J. Biochem. 12, 31-39. https://doi.org/10.1111/j.1432-1033.1970.tb00817.x
  4. Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11-21. https://doi.org/10.1038/35036035
  5. Blind, R.D., Suzawa, M., and Ingraham, H.A. (2012). Direct modification and regulation of a nuclear receptor-PIP2 complex by the inositol lipid kinase IPMK. Sci. Signal. 5, ra44. https://doi.org/10.1126/scisignal.2003111
  6. Chakraborty, A., Kim, S., and Snyder, S.H. (2011). Inositol pyrophosphates as mammalian cell signals. Sci. Signal. 4, re1. https://doi.org/10.1126/scisignal.2001958
  7. Chen, D., Wang, Z., Zhao, Y.G., Zheng, H., Zhao, H., Liu, N., and Zhang, H. (2020). Inositol polyphosphate multikinase inhibits liquid-liquid phase separation of TFEB to negatively regulate autophagy activity. Dev. Cell 55, 588-602.e7. https://doi.org/10.1016/j.devcel.2020.10.010
  8. Dato, S., Crocco, P., De Rango, F., Iannone, F., Maletta, R., Bruni, A.C., Saiardi, A., Rose, G., and Passarino, G. (2021). IP6K3 and IPMK variations in LOAD and longevity: evidence for a multifaceted signaling network at the crossroad between neurodegeneration and survival. Mech. Ageing Dev. 195, 111439. https://doi.org/10.1016/j.mad.2021.111439
  9. De Rango, F., Crocco, P., Iannone, F., Saiardi, A., Passarino, G., Dato, S., and Rose, G. (2019). Inositol polyphosphate multikinase (IPMK), a gene coding for a potential moonlighting protein, contributes to human female longevity. Genes (Basel) 10, 125. https://doi.org/10.3390/genes10020125
  10. Desfougeres, Y., Wilson, M.S.C., Laha, D., Miller, G.J., and Saiardi, A. (2019). ITPK1 mediates the lipid-independent synthesis of inositol phosphates controlled by metabolism. Proc. Natl. Acad. Sci. U. S. A. 116, 24551-24561. https://doi.org/10.1073/pnas.1911431116
  11. Dick, R.A., Zadrozny, K.K., Xu, C., Schur, F., Lyddon, T.D., Ricana, C.L., Wagner, J.M., Perilla, J.R., Ganser-Pornillos, B.K., Johnson, M.C., et al. (2018). Inositol phosphates are assembly co-factors for HIV-1. Nature 560, 509-512. https://doi.org/10.1038/s41586-018-0396-4
  12. Dovey, C.M., Diep, J., Clarke, B.P., Hale, A.T., McNamara, D.E., Guo, H., Brown, N.W., Jr., Cao, J.Y., Grace, C.R., Gough, P.J., et al. (2018). MLKL requires the inositol phosphate code to execute necroptosis. Mol. Cell 70, 936-948.e7. https://doi.org/10.1016/j.molcel.2018.05.010
  13. Frederick, J.P., Mattiske, D., Wofford, J.A., Megosh, L.C., Drake, L.Y., Chiou, S.T., Hogan, B.L.M., and York, J.D. (2005). An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production. Proc. Natl. Acad. Sci. U. S. A. 102, 8454-8459. https://doi.org/10.1073/pnas.0503706102
  14. Fu, C., Tyagi, R., Chin, A.C., Rojas, T., Li, R.J., Guha, P., Bernstein, I.A., Rao, F., Xu, R., Cha, J.Y., et al. (2018). Inositol polyphosphate multikinase inhibits angiogenesis via inositol pentakisphosphate-induced HIF-1α degradation. Circ. Res. 122, 457-472. https://doi.org/10.1161/circresaha.117.311983
  15. Gu, C., Stashko, M.A., Puhl-Rubio, A.C., Chakraborty, M., Chakraborty, A., Frye, S.V., Pearce, K.H., Wang, X., Shears, S.B., and Wang, H. (2019). Inhibition of inositol polyphosphate kinases by quercetin and related flavonoids: a structure-activity analysis. J. Med. Chem. 62, 1443-1454. https://doi.org/10.1021/acs.jmedchem.8b01593
  16. Guha, P., Tyagi, R., Chowdhury, S., Reilly, L., Fu, C., Xu, R., Resnick, A.C., and Snyder, S.H. (2019). IPMK mediates activation of ULK signaling and transcriptional regulation of autophagy linked to liver inflammation and regeneration. Cell Rep. 26, 2692-2703.e7. https://doi.org/10.1016/j.celrep.2019.02.013
  17. Hatch, A.J., Odom, A.R., and York, J.D. (2017). Inositol phosphate multikinase dependent transcriptional control. Adv. Biol. Regul. 64, 9-19. https://doi.org/10.1016/j.jbior.2017.03.001
  18. Hatch, A.J. and York, J.D. (2010). SnapShot: inositol phosphates. Cell 143, 1030-1030.e1. https://doi.org/10.1016/j.cell.2010.11.045
  19. Holub, B.J. (1986). Metabolism and function of myo-inositol and inositol phospholipids. Annu. Rev. Nutr. 6, 563-597. https://doi.org/10.1146/annurev.nu.06.070186.003023
  20. Kim, E., Ahn, H., Kim, M.G., Lee, H., and Kim, S. (2017a). The expanding significance of inositol polyphosphate multikinase as a signaling hub. Mol. Cells 40, 315-321. https://doi.org/10.14348/molcells.2017.0066
  21. Kim, E., Beon, J., Lee, S., Park, S.J., Ahn, H., Kim, M.G., Park, J.E., Kim, W., Yuk, J.M., Kang, S.J., et al. (2017b). Inositol polyphosphate multikinase promotes Toll-like receptor-induced inflammation by stabilizing TRAF6. Sci. Adv. 3, e1602296. https://doi.org/10.1126/sciadv.1602296
  22. Kim, E., Tyagi, R., Lee, J.Y., Park, J., Kim, Y.R., Beon, J., Chen, P.Y., Cha, J.Y., Snyder, S.H., and Kim, S. (2013). Inositol polyphosphate multikinase is a coactivator for serum response factor-dependent induction of immediate early genes. Proc. Natl. Acad. Sci. U. S. A. 110, 19938-19943. https://doi.org/10.1073/pnas.1320171110
  23. Kim, J., Kundu, M., Viollet, B., and Guan, K.L. (2011a). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141. https://doi.org/10.1038/ncb2152
  24. Kim, S., Kim, S.F., Maag, D., Maxwell, M.J., Resnick, A.C., Juluri, K.R., Chakraborty, A., Koldobskiy, M.A., Cha, S.H., Barrow, R., et al. (2011b). Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase. Cell Metab. 13, 215-221. https://doi.org/10.1016/j.cmet.2011.01.007
  25. Kim, W., Kim, E., Min, H., Kim, M.G., Eisenbeis, V.B., Dutta, A.K., Pavlovic, I., Jessen, H.J., Kim, S., and Seong, R.H. (2019). Inositol polyphosphates promote T cell-independent humoral immunity via the regulation of Bruton's tyrosine kinase. Proc. Natl. Acad. Sci. U. S. A. 116, 12952-12957. https://doi.org/10.1073/pnas.1821552116
  26. Lee, B., Park, S.J., Lee, S., Park, S.E., Lee, E., Song, J.J., Byun, Y., and Kim, S. (2020a). Identification of the antidepressant vilazodone as an inhibitor of inositol polyphosphate multikinase by structure-based drug repositioning. Mol. Cells 43, 222-227. https://doi.org/10.14348/molcells.2020.0051
  27. Lee, S., Beon, J., Kim, M.G., and Kim, S. (2020b). Inositol polyphosphate multikinase in adipocytes is dispensable for regulating energy metabolism and whole body metabolic homeostasis. Am. J. Physiol. Endocrinol. Metab. 319, E401-E409. https://doi.org/10.1152/ajpendo.00030.2020
  28. Lee, S., Kim, M.G., Ahn, H., and Kim, S. (2020c). Inositol pyrophosphates: signaling molecules with pleiotropic actions in mammals. Molecules 25, 2208. https://doi.org/10.3390/molecules25092208
  29. Maag, D., Maxwell, M.J., Hardesty, D.A., Boucher, K.L., Choudhari, N., Hanno, A.G., Ma, J.F., Snowman, A.S., Pietropaoli, J.W., Xu, R., et al. (2011). Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB. Proc. Natl. Acad. Sci. U. S. A. 108, 1391-1396. https://doi.org/10.1073/pnas.1017831108
  30. Mallery, D.L., Faysal, K., Kleinpeter, A., Wilson, M., Vaysburd, M., Fletcher, A.J., Novikova, M., Bocking, T., Freed, E.O., Saiardi, A., et al. (2019). Cellular IP6 levels limit HIV production while viruses that cannot efficiently package IP6 are attenuated for infection and replication. Cell Rep. 29, 3983-3996.e4. https://doi.org/10.1016/j.celrep.2019.11.050
  31. McNamara, D.E., Dovey, C.M., Hale, A.T., Quarato, G., Grace, C.R., Guibao, C.D., Diep, J., Nourse, A., Cai, C.R., Wu, H., et al. (2019). Direct activation of human MLKL by a select repertoire of inositol phosphate metabolites. Cell Chem. Biol. 26, 863-877.e7. https://doi.org/10.1016/j.chembiol.2019.03.010
  32. Millard, C.J., Watson, P.J., Celardo, I., Gordiyenko, Y., Cowley, S.M., Robinson, C.V., Fairall, L., and Schwabe, J.W.R. (2013). Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell 51, 57-67.
  33. Najafov, A., Chen, H., and Yuan, J. (2017). Necroptosis and cancer. Trends Cancer 3, 294-301. https://doi.org/10.1016/j.trecan.2017.03.002
  34. Odom, A.R., Stahlberg, A., Wente, S.R., and York, J.D. (2000). A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287, 2026-2029. https://doi.org/10.1126/science.287.5460.2026
  35. Park, J., Longo, F., Park, S.J., Lee, S., Bae, M., Tyagi, R., Han, J.H., Kim, S., Santini, E., Klann, E., et al. (2019). Inositol polyphosphate multikinase mediates extinction of fear memory. Proc. Natl. Acad. Sci. U. S. A. 116, 2707-2712. https://doi.org/10.1073/pnas.1812771116
  36. Park, S.J., Lee, S., Park, S.E., and Kim, S. (2018). Inositol pyrophosphates as multifaceted metabolites in the regulation of mammalian signaling networks. Anim. Cells Syst. (Seoul) 22, 1-6. https://doi.org/10.1080/19768354.2017.1408684
  37. Pernicova, I. and Korbonits, M. (2014). Metformin - mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143-156. https://doi.org/10.1038/nrendo.2013.256
  38. Saiardi, A., Erdjument-Bromage, H., Snowman, A.M., Tempst, P., and Snyder, S.H. (1999). Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9, 1323-1326. https://doi.org/10.1016/S0960-9822(00)80055-X
  39. Seacrist, C.D. and Blind, R.D. (2018). Crystallographic and kinetic analyses of human IPMK reveal disordered domains modulate ATP binding and kinase activity. Sci. Rep. 8, 16672. https://doi.org/10.1038/s41598-018-34941-3
  40. Sei, Y., Zhao, X., Forbes, J., Szymczak, S., Li, Q., Trivedi, A., Voellinger, M., Joy, G., Feng, J., Whatley, M., et al. (2015). A hereditary form of small intestinal carcinoid associated with a germline mutation in inositol polyphosphate multikinase. Gastroenterology 149, 67-78. https://doi.org/10.1053/j.gastro.2015.04.008
  41. Shears, S.B. (2015). Inositol pyrophosphates: why so many phosphates? Adv. Biol. Regul. 57, 203-216. https://doi.org/10.1016/j.jbior.2014.09.015
  42. Sowd, G.A. and Aiken, C. (2021). Inositol phosphates promote HIV-1 assembly and maturation to facilitate viral spread in human CD4+ T cells. PLoS Pathog. 17, e1009190. https://doi.org/10.1371/journal.ppat.1009190
  43. Tu-Sekine, B., Padhi, A., Jin, S., Kalyan, S., Singh, K., Apperson, M., Kapania, R., Hur, S.C., Nain, A., and Kim, S.F. (2019). Inositol polyphosphate multikinase is a metformin target that regulates cell migration. FASEB J. 33, 14137-14146. https://doi.org/10.1096/fj.201900717RR
  44. Wang, Q., Vogan, E.M., Nocka, L.M., Rosen, C.E., Zorn, J.A., Harrison, S.C., and Kuriyan, J. (2015). Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate. Elife 4, e06074. https://doi.org/10.7554/eLife.06074
  45. Wang, Y.H., Hariharan, A., Bastianello, G., Toyama, Y., Shivashankar, G.V., Foiani, M., and Sheetz, M.P. (2017). DNA damage causes rapid accumulation of phosphoinositides for ATR signaling. Nat. Commun. 8, 2118. https://doi.org/10.1038/s41467-017-01805-9
  46. Watson, P., Fairall, L., Santos, G., and Schwabe, J. (2012). Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481, 335-340. https://doi.org/10.1038/nature10728
  47. Watson, P.J., Millard, C.J., Riley, A.M., Robertson, N.S., Wright, L.C., Godage, H.Y., Cowley, S.M., Jamieson, A.G., Potter, B.V.L., and Schwabe, J.W.R. (2016). Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat. Commun. 7, 11262. https://doi.org/10.1038/ncomms11262
  48. Wickramasinghe, V., Savill, J., Chavali, S., Jonsdottir, A., Rajendra, E., Gruner, T., Laskey, R., Babu, M.M., and Venkitaraman, A. (2013). Human inositol polyphosphate multikinase regulates transcriptselective nuclear mRNA export to preserve genome integrity. Mol. Cell 51, 737-750. https://doi.org/10.1016/j.molcel.2013.08.031
  49. Xu, R., Paul, B.D., Smith, D.R., Tyagi, R., Rao, F., Khan, A.B., Blech, D.J., Vandiver, M.S., Harraz, M.M., Guha, P., et al. (2013a). Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction. Proc. Natl. Acad. Sci. U. S. A. 110, 16181-16186. https://doi.org/10.1073/pnas.1315551110
  50. Xu, R., Sen, N., Paul, B.D., Snowman, A.M., Rao, F., Vandiver, M.S., Xu, J., and Snyder, S.H. (2013b). Inositol polyphosphate multikinase is a coactivator of p53-mediated transcription and cell death. Sci. Signal. 6, ra22. https://doi.org/10.1126/scisignal.2003405
  51. Yokoyama, J.S., Wang, Y., Schork, A.J., Thompson, W.K., Karch, C.M., Cruchaga, C., McEvoy, L.K., Witoelar, A., Chen, C.H., Holland, D., et al. (2016). Association between genetic traits for immunemediated diseases and alzheimer disease. JAMA Neurol. 73, 691-697. https://doi.org/10.1001/jamaneurol.2016.0150
  52. Zhu, Q., Ghoshal, S., Rodrigues, A., Gao, S., Asterian, A., Kamenecka, T.M., Barrow, J.C., and Chakraborty, A. (2016). Adipocyte-specific deletion of Ip6k1 reduces diet-induced obesity by enhancing AMPK-mediated thermogenesis. J. Clin. Invest. 126, 4273-4288. https://doi.org/10.1172/JCI85510

Cited by

  1. Myeloid IPMK promotes the resolution of serum transfer-induced arthritis in mice vol.25, pp.4, 2021, https://doi.org/10.1080/19768354.2021.1952305
  2. Inositol Phosphates and Retroviral Assembly: A Cellular Perspective vol.13, pp.12, 2021, https://doi.org/10.3390/v13122516