Acknowledgement
The research leading to these results received from the Konyang University Research Fund in 2019.
References
- Arends, Y., Duyckaerts, C., Rozemuller, J., Eikelenboom, P., and Hauw, J. (2000). Microglia, amyloid and dementia in Alzheimer disease: a correlative study. Neurobiol. Aging 21, 39-47.
- Ashrafian, H., Zadeh, E.H., and Khan, R.H. (2020). Review on Alzheimer's disease: inhibition of amyloid beta and tau tangle formation. Int. J. Biol. Macromol. 167, 382-394. https://doi.org/10.1016/j.ijbiomac.2020.11.192
- Binder, L.I., Guillozet-Bongaarts, A.L., Garcia-Sierra, F., and Berry, R.W. (2005). Tau, tangles, and Alzheimer's disease. Biochim. Biophys. Acta 1739, 216-223. https://doi.org/10.1016/j.bbadis.2004.08.014
- Block, M.L., Zecca, L., and Hong, J.S. (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69. https://doi.org/10.1038/nrn2038
- Buckingham, J.C., John, C.D., Solito, E., Tierney, T., Flower, R.J., Christian, H., and Morris, J. (2006). Annexin 1, glucocorticoids, and the neuroendocrine-immune interface. Ann. N. Y. Acad. Sci. 1088, 396. https://doi.org/10.1196/annals.1366.002
- Chan, A., Magnus, T., and Gold, R. (2001). Phagocytosis of apoptotic inflammatory cells by microglia and modulation by different cytokines: mechanism for removal of apoptotic cells in the inflamed nervous system. Glia 33, 87-95. https://doi.org/10.1002/1098-1136(20010101)33:1<87::AID-GLIA1008>3.0.CO;2-S
- Choi, E.J., Jeon, C.H., Park, D.H., and Kwon, T.H. (2020). Allithiamine exerts therapeutic effects on sepsis by modulating metabolic flux during dendritic cell activation. Mol. Cells 43, 964-973. https://doi.org/10.14348/molcells.2020.0198
- Colonna, M. and Butovsky, O. (2017). Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441-468. https://doi.org/10.1146/annurev-immunol-051116-052358
- Colton, C.A. and Wilcock, D.M. (2010). Assessing activation states in microglia. CNS Neurol. Disord. Drug Targets 9, 174-191. https://doi.org/10.2174/187152710791012053
- Dai, X.J., Li, N., Yu, L., Chen, Z.Y., Hua, R., Qin, X., and Zhang, Y.M. (2015). Activation of BV2 microglia by lipopolysaccharide triggers an inflammatory reaction in PC12 cell apoptosis through a toll-like receptor 4-dependent pathway. Cell Stress Chaperones 20, 321-331. https://doi.org/10.1007/s12192-014-0552-1
- Davie, C.A. (2008). A review of Parkinson's disease. Br. Med. Bull. 86, 109-127. https://doi.org/10.1093/bmb/ldn013
- Dreier, R., Schmid, K.W., Gerke, V., and Riehemann, K. (1998). Differential expression of annexins I, II and IV in human tissues: an immunohistochemical study. Histochem. Cell Biol. 110, 137-148. https://doi.org/10.1007/s004180050275
- Duncan, T. and Valenzuela, M. (2017). Alzheimer's disease, dementia, and stem cell therapy. Stem Cell Res. Ther. 8, 111. https://doi.org/10.1186/s13287-017-0567-5
- Eikelenboom, P. and Veerhuis, R. (1996). The role of complement and activated microglia in the pathogenesis of Alzheimer's disease. Neurobiol. Aging 17, 673-680. https://doi.org/10.1016/0197-4580(96)00108-X
- Fan, Y., Xie, L., and Chung, C.Y. (2017). Signaling pathways controlling microglia chemotaxis. Mol. Cells 40, 163. https://doi.org/10.14348/molcells.2017.0011
- Franco, R. and Fernandez-Suarez, D. (2015). Alternatively activated microglia and macrophages in the central nervous system. Prog. Neurobiol. 131, 65-86. https://doi.org/10.1016/j.pneurobio.2015.05.003
- Gordon, S. and Taylor, P.R. (2005). Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953-964. https://doi.org/10.1038/nri1733
- Graeber, M.B. (2010). Changing face of microglia. Science 330, 783-788. https://doi.org/10.1126/science.1190929
- Han, P.F., Che, X.D., Li, H.Z., Gao, Y.Y., Wei, X.C., and Li, P.C. (2020). Annexin A1 involved in the regulation of inflammation and cell signaling pathways. Chin. J. Traumatol. 23, 96-101. https://doi.org/10.1016/j.cjtee.2020.02.002
- Hanisch, U.K. and Kettenmann, H. (2007). Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387-1394. https://doi.org/10.1038/nn1997
- Henkel, J.S., Beers, D.R., Zhao, W., and Appel, S.H. (2009). Microglia in ALS: the good, the bad, and the resting. J. Neuroimmune Pharmacol. 4, 389-398. https://doi.org/10.1007/s11481-009-9171-5
- Jeong, S. (2017). Molecular and cellular basis of neurodegeneration in Alzheimer's disease. Mol. Cells 40, 613. https://doi.org/10.14348/molcells.2017.0096
- Katz, I.R., Jeste, D.V., Mintzer, J.E., and Clyde, C. (1999). Comparison of risperidone and placebo for psychosis and behavioral disturbances associated with dementia: a randomized, double-blind trial. J. Clin. Psychiatry 60, 107-115. https://doi.org/10.4088/JCP.v60n0207
- Lewcock, J.W., Schlepckow, K., Di Paolo, G., Tahirovic, S., Monroe, K.M., and Haass, C. (2020). Emerging microglia biology defines novel therapeutic approaches for Alzheimer's disease. Neuron 108, 801-821. https://doi.org/10.1016/j.neuron.2020.09.029
- Liu, B. and Hong, J.S. (2003). Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther. 304, 1-7. https://doi.org/10.1124/jpet.102.035048
- Ma, H.W., Ye, W., Chen, H.S., Nie, T.J., Cheng, L.F., Zhang, L., Han, P.J., Wu, X.A., Xu, Z.K., and Lei, Y.F. (2017). In-cell western assays to evaluate Hantaan virus replication as a novel approach to screen antiviral molecules and detect neutralizing antibody titers. Front. Cell. Infect. Microbiol. 7, 269. https://doi.org/10.3389/fcimb.2017.00269
- Magnus, T., Chan, A., Grauer, O., Toyka, K.V., and Gold, R. (2001). Microglial phagocytosis of apoptotic inflammatory T cells leads to down-regulation of microglial immune activation. J. Immunol. 167, 5004-5010. https://doi.org/10.4049/jimmunol.167.9.5004
- Masters, C.L., Bateman, R., Blennow, K., Rowe, C.C., Sperling, R.A., and Cummings, J.L. (2015). Alzheimer's disease. Nat. Rev. Dis. Primers 1, 15056. https://doi.org/10.1038/nrdp.2015.56
- McArthur, S., Cristante, E., Paterno, M., Christian, H., Roncaroli, F., Gillies, G.E., and Solito, E. (2010). Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J. Immunol. 185, 6317-6328. https://doi.org/10.4049/jimmunol.1001095
- Nilsson, P., Iwata, N., Muramatsu, S., Tjernberg, L.O., Winblad, B., and Saido, T.C. (2010). Gene therapy in Alzheimer's disease-potential for disease modification. J. Cell. Mol. Med. 14, 741-757. https://doi.org/10.1111/j.1582-4934.2010.01038.x
- Nimmerjahn, A., Kirchhoff, F., and Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314-1318. https://doi.org/10.1126/science.1110647
- Pascual, O., Achour, S.B., Rostaing, P., Triller, A., and Bessis, A. (2012). Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl. Acad. Sci. U. S. A. 109, E197-E205. https://doi.org/10.1073/pnas.1111098109
- Perry, V.H., Nicoll, J.A., and Holmes, C. (2010). Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6, 193. https://doi.org/10.1038/nrneurol.2010.17
- Picca, A., Calvani, R., Coelho-Junior, H.J., Landi, F., Bernabei, R., and Marzetti, E. (2020). Mitochondrial dysfunction, oxidative stress, and neuroinflammation: intertwined roads to neurodegeneration. Antioxidants (Basel) 9, 647. https://doi.org/10.3390/antiox9080647
- Qiu, X., Guo, H., Yang, J., Ji, Y., Wu, C.S., and Chen, X. (2018). Downregulation of guanylate binding protein 1 causes mitochondrial dysfunction and cellular senescence in macrophages. Sci. Rep. 8, 1-12. https://doi.org/10.1038/s41598-017-17765-5
- Ramani, P.K. and Sankaran, B.P. (2020). Tay-Sachs disease. In StatPearls [Internet], B. Abai, ed. (Treasure Island: StatPearls Publishing).
- Ransohoff, R.M. (2016). A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci. 19, 987. https://doi.org/10.1038/nn.4338
- Ransohoff, R.M. and Perry, V.H. (2009). Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119-145. https://doi.org/10.1146/annurev.immunol.021908.132528
- Scheiblich, H., Trombly, M., Ramirez, A., and Heneka, M.T. (2020). Neuroimmune connections in aging and neurodegenerative diseases. Trends Immunol. 41, 300-312. https://doi.org/10.1016/j.it.2020.02.002
- Shaji, K., Sivakumar, P., Rao, G.P., and Paul, N. (2018). Clinical practice guidelines for management of dementia. Indian J. Psychiatry 60(Suppl 3), S312-S328.
- Shin, S.J., Jeon, S.G., Kim, J.I., Jeong, Y.O., Kim, S., Park, Y.H., Lee, S.K., Park, H.H., Hong, S.B., Oh, S., et al. (2019). Red ginseng attenuates Aβ-induced mitochondrial dysfunction and Aβ-mediated pathology in an animal model of Alzheimer's disease. Int. J. Mol. Sci. 20, 3030. https://doi.org/10.3390/ijms20123030
- Solito, E., McArthur, S., Christian, H., Gavins, F., Buckingham, J.C., and Gillies, G.E. (2008). Annexin A1 in the brain-undiscovered roles? Trends Pharmacol. Sci. 29, 135-142. https://doi.org/10.1016/j.tips.2007.12.003
- Summers, W.K., Majovski, L.V., Marsh, G.M., Tachiki, K., and Kling, A. (1986). Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. N. Engl. J. Med. 315, 1241-1245. https://doi.org/10.1056/NEJM198611133152001
- Tang, Y. and Le, W. (2016). Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 53, 1181-1194. https://doi.org/10.1007/s12035-014-9070-5
- Wang, N., Liang, H., and Zen, K. (2014). Molecular mechanisms that influence the macrophage M1-M2 polarization balance. Front. Immunol. 5, 614. https://doi.org/10.3389/fimmu.2014.00614