DOI QR코드

DOI QR Code

생육 시기와 온도에 따른 솎아내기 전후의 새송이버섯의 이산화탄소 발생 속도 모델링

Carbon Dioxide Emission Modeling of King Oyster Mushroom before and after Thinning Processes According to Temperature and Growth Stage

  • 정대호 (제주한라대학교 생명자원학부 환경원예과) ;
  • 손정익 (서울대학교 농림생물자원학부)
  • Jung, Dae Ho (Department of Environmental Horticulture, Cheju Halla University) ;
  • Son, Jung Eek (Department of Agriculture, Forest and Bioresources (Horticultural Science and Biotechnology))
  • 투고 : 2021.03.22
  • 심사 : 2021.04.21
  • 발행 : 2021.04.30

초록

온도와 CO2 농도는 버섯의 생육과 품질에 영향을 미친다. 특히, 버섯의 호흡에 의한 고농도 CO2는 버섯의 생리 장해를 발생시킨다. 본 연구에서는 생육 시기와 솎아내기 여부에 따른 새송이 버섯(Pleurotus eryngii (DC.) Quél)의 CO2 발생 속도를 정량화 하였다. 버섯의 자실체를 포함하는 배지의 CO2 발생 속도는 솎아내기 전에 비해 후에 통계적으로 유의미한 상승을 보였다. 호흡 모델에서 자실체의 유지 계수와 CO2 발생 계수는 온도에 따른 이차식으로 표현되었다. 버섯 1병의 CO2 발생 속도 모델에 의한 추정치는 실측치와 검증을 통해 R2 = 0.71의 결과를 나타내었다. 이로부터 버섯의 CO2 발생 속도는 생육 시기에 따라 지수적으로, 16℃에서 25℃ 범위에서 이차함수 형태로 증가함을 확인하였다. 본 연구에서 정립한 새송이 버섯의 CO2 발생 속도 모델은 새송이버섯을 재배사의 CO2와 온도 관리를 위해 사용될 수 있다.

Temperature and CO2 concentration affect the yield and quality of mushrooms. In particular, high CO2 concentration due to mushroom respiration induces specific physiological disorders of mushrooms. The objective of this study was to quantify the CO2 emission rate of King Oyster mushrooms (Pleurotus eryngii (DC.) Quél) as a function of temperature and growth stage during the cultivation including thinning processes. CO2 emission rates of the substrate including mycelium before and after thinning were significantly different. In the respiration model, the maintenance and CO2 production coefficients of fruit bodies were expressed as quadratic equations according to temperature. The total CO2 emission rate of a bottle of mushroom estimated by the model were validated with measured ones (R2 = 0.71). The CO2 emission rates of the mushroom showed exponential and quadratical increases with growth stage and temperature at 16 to 25℃, respectively. The CO2 emission rate models developed for King Oyster mushroom can be utilized to control the CO2 concentration and temperature in mushroom cultivation facilities.

키워드

참고문헌

  1. Azevedo S., L.M. Cunha, and S.C. Fonseca 2015, Modelling the influence of time and temperature on the respiration rate of fresh oyster mushrooms. Food Sci. Technol. Int 21:593-603. doi:10.1177/1082013214555925
  2. Bekku Y., H. Koizumi, T. Nakadai, and H. Iwaki 1995, Measurement of soil respiration using closed chamber method: an IRGA technique. Ecol. Res 10:369-373. doi:10.1007/bf02347863
  3. Brandle J., and N. Kunert 2019, A new automated stem CO2 efflux chamber based on industrial ultra-low-cost sensors. Tree Physiol 39:1975-1983. doi:10.1093/treephys/tpz104
  4. Burton K.S., and R. Noble 1993, The influence of flush number, bruising and storage temperature on mushroom quality. Postharvest Biol. Technol 3:39-47. doi:10.1016/0925-5214(93)90025-x
  5. Cannell M.G.R., and J.H.M. Thornley 2000, Modelling the components of plant respiration: some guiding principles. Ann. Bot 85:45-54. doi:10.1006/anbo.1999.0996
  6. Chanter D.O., and J.H.M. Thornley 1978, Mycelial growth and the initiation and growth of sporophores in the mushroom crop: a mathematical model. J. Gen. Microbiol 106:55-65. doi:10.1099/00221287-106-1-55
  7. Flegg P.B., and J.F. Smith 1982, Effect of spawn strain and available substrate on the relative yield of mushrooms in successive flushes. Sci. Hortic 17:217-222. doi:10.1016/0304-4238(82)90043-7
  8. Fonseca S.C., F.A.R. Oliveira, and J.K. Brecht 2002, Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. J. Food Eng 52:99-119. doi:10.1016/s0260-8774(01)00106-6
  9. Iqbal T., F.A.S. Rodrigues, P.V. Mahajan, and J.P. Kerry 2009, Mathematical modelling of O2 consumption and CO2 production rates of whole mushrooms accounting for the effect of temperature and gas composition. Int. J. Food Sci. Technol 44:1408-1414. doi:10.1111/j.1365-2621.2009.01971.x
  10. Jacxsens L., F. Devlieghere, C. van der Steen, and J. Debevere 2001, Effect of high oxygen modified atmosphere packaging on microbial growth and sensorial qualities of fresh-cut produce. Int. J. Food Microbiol 71:197-210. doi:10.1016/s0168-1605(01)00616-x
  11. Jang M.J., T.M. Ha, and Y.C. Ju 2007, Comparison of respiration characteristics on the new variety of oyster mushroom according to the growth temperature. J. Mushroom Sci. Product 5:65-70.
  12. Jang M.J., T.M. Ha, Y.H. Lee, and Y.C. Ju 2009, Growth characteristics of variety of oyster mushroom (Pleurotus ostreatus) as affected by number of air exchanges. J. Bio-Environ. Cont 18:208-214.
  13. Jung D.H., C.K. Kim, K.H. Oh, D.H. Lee, M.S. Kim, J.H. Shin, and J.E. Son 2014, Analyses of CO2 concentration and balance in a closed production system for King Oyster mushroom and lettuce. Hortic. Sci. Technol 10:628-635. doi:10.7235/hort.2014.13192
  14. Kamal A.S.M., A. Khair, F. Begum, K. Chowdhury, and R. Karim 2015, Effect of respiratory gases (O2;CO2) on shelf-life of fresh oyster mushrooms packaged with different sealable polymeric materials. Bangladesh J. Sci. Ind. Res 50:205-210. doi:10.3329/bjsir.v50i3.25587
  15. Kues U., and Y. Liu 2000, Fruiting body production in basidiomycetes. Appl. Microbiol. Biotechnol 54:141-152. doi:10.1007/s002530000396
  16. Kim K.J., D.M. Kim, H.S. An, J.K. Choi, and S.G. Kim 2019, Analysis of the growth environment and fruiting body quality of Pleurotus eryngii cultivated by smart farming. J. Mushrooms 17:211-217.
  17. Kim Y.I., J.S. Seok, and W.S. Kwak 2010, Evaluation of microvially ensiled spent mushroom (Pleurotus osteratus) substrate (bed-type cultivation) as a roughage for ruminants. J. Anim. Sci. Technol 52:117-124. doi:10.5187/jast.2010.52.2.117
  18. Kinugawa K., A. Suzuki, Y. Takamatsu, M. Kato, and K. Tanaka 1994, Effects of concentrated carbon dioxide on the fruiting of several cultivated basidiomycetes (II). Mycoscience 35:345-352. doi:10.1007/bf02268504
  19. Kitamoto Y., and H.E. Gruen 1976, Distribution of cellular carbohydrates during development of the mycelium and fruitbodies of Flammulina velutipes. Plant Physiol 58:485-491. doi:10.1104/pp.58.4.485
  20. Kitaya Y., A. Tani, M. Kiyota, and I. Aiga 1994, Plant growth and gas balance in a plant and mushroom cultivation system. Adv. Space Res 14:281-284. doi:10.1016/0273-1177(94)90309-3
  21. Koch A.L. 1975, The kinetics of mycelial growth. J. Gen. Microbiol 89:209-216. doi:10.1099/00221287-89-2-209
  22. Lee D.J., K.P. Kim, and B.E. Lee 2003, Studies on artificial cultivation of Pleurotus eryngii (De Canolle ex Freies) Quel. Kor. J. Mycol 31:192-199. doi:10.4489/kjm.2003.31.3.192
  23. Oh T.S., Y.H. Lee, C.H. Kim, Y.K. Cho, and M.J. Jang 2017, Comparative study of the growth characteristics of Pleurotus eryngii by using alternative substrates to rice bran. J. Mushrooms 15:57-60. doi:0.14480/jm.2017.15.1.57 https://doi.org/10.14480/JM.2017.15.1.57
  24. Pogorzelska-Nowicka E., M. Hanula, I. Wojtasik-Kalinowska, A. Stelmasiak, M. Zalewska, A. Poltorak, and A. Wierzbicka 2020, Packaging in a high O2 or air atmospheres and in microperforated films effects on quality of button mushrooms stored at room temperature. Agriculture 10:479. doi:10.3390/agriculture10100479
  25. Rochette P., B. Ellert, E.G. Gregorich, R.L. Desjardins, E. Pattey, R. Lessard, and B.G. Johnson 1997, Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can. J. Soil Sci 77:195-203. doi:10.4141/s96-110
  26. Ryu J.S., M.K. Kim, S.H. Cho, Y.C. Yun, W.M. Seo, and H.S. Lee 2005, Optimal CO2 level for cultivation of Pleurotus eryngii. J. Mushroom Sci. Product 3:95-99.
  27. Takahashi N., P.P. Ling, and J.M. Frantz 2008, Considerations for accurate whole plant photosynthesis measurement. Environ. Cont. Biol 46:91-101. doi:10.2525/ecb.46.91
  28. Tani A., M. Kiyota, I. Aiga, K. Nitta, Y. Tako, A. Ashida, K. Otsubo, and T. Saito 1996, Measurements of trace contaminants in closed-type plant cultivation chambers. Adv. Space Res 18:181-188. doi:10.1016/0273-1177(95)00875-f
  29. Thornley J.H.M. 1970, Respiration, growth and maintenance in plants. Nature 227:304-305. doi:10.1038/227304b0
  30. Yamanaka K. 2011, Mushroom cultivation in Japan. The World Society for Mushroom Biology and Mushroom Products (WSMBMP) Bulletin 4:1-10.
  31. Yang J., J.Y. Zhao, Q. Guo, Y.S. Wang, and R.J. Wang 2010, Data acquisition method for measuring mycelium growth of microorganism with GIS. In International Conference on Computer and Computing Technologies in Agriculture, Springer, Berlin, Heidelberg, pp. 374-380. doi:10.1007/978-3-642-18333-1_44
  32. Yang J., J.Y. Zhao, H. Yu, L.H. Tang, and R.J. Wang 2012, Mathematical study of the effects of temperature and humidity on the mycelium growth of Pleurotus eryngii. In Agro-Geoinformatics, 2012 First International Conference on, Institute of Electrical and Electronics Engineers, New York, pp 1-5. doi:10.1109/agro-geoinformatics.2012.6311639
  33. Zadrazil F. 1975, Influence of CO2 concentration on the mycelium growth of three Pleurotus species. Eur. J. Appl. Microbiol. Biotechnol 1:327-335. doi:10.1007/bf01382692