DOI QR코드

DOI QR Code

수경재배 시스템에서 양액의 NaCl 농도 및 처리시기에 따른 갯방풍의 생육 및 생리활성화합물의 함량

Growth and Bioactive Compound Contents of Glehnia littoralis Fr. Schmidt ex Miquel as Affected by Different NaCl Concentrations and Treatment Timing on Nutrient Solution of Hydroponic System

  • 권수민 (경상국립대학교 대학원 응용생명과학부) ;
  • 정현우 (경상국립대학교 대학원 응용생명과학부) ;
  • 이혜리 (경상국립대학교 대학원 응용생명과학부) ;
  • 조현규 (경상국립대학교 대학원 응용생명과학부) ;
  • 황희성 (경상국립대학교 대학원 작물생산과학부) ;
  • 황승재 (경상국립대학교 농업생명과학대학 원예학과)
  • Kwon, Su Min (Division of Applied Life Science, Graduated School of Gyeongsang National University) ;
  • Jeong, Hyeon Woo (Division of Applied Life Science, Graduated School of Gyeongsang National University) ;
  • Lee, Hye Ri (Division of Applied Life Science, Graduated School of Gyeongsang National University) ;
  • Jo, Hyeon Gyu (Division of Applied Life Science, Graduated School of Gyeongsang National University) ;
  • Hwang, Hee Sung (Division of Crop Science, Graduate School of Gyeongsang National University) ;
  • Hwang, Seung Jae (Department of Horticulture, College of Agriculture & Life Sciences, Gyeongsang National University)
  • 투고 : 2021.03.17
  • 심사 : 2021.04.12
  • 발행 : 2021.04.30

초록

본 연구는 갯방풍의 생장 및 생리활성화합물 함량에 대한 NaCl 농도 및 처리 시기의 효과를 조사하기 위해 수행되었다. 첫 번째 실험에서 갯방풍 묘는 온실에서 호글랜드(EC 1.5dS·m-1, pH 6.5) 배양액에 NaCl 40, 80, 120, 160, 200mM을 첨가하여 담액식 수경재배 시스템에 정식 후 30일 동안 재배되었다. 두 번째 실험에서 갯방풍은 수확 10일 전, 5일 전에 양액에 NaCl 50, 100, 150, 200mM을 첨가하여 담액식 수경재배 시스템에서 50일 동안 재배되었다. 두 실험 모두 NaCl 처리를 하지 않은 것을 대조군으로 사용했다. 식물 생장과 광합성 특성, 총 페놀함량, 총 플라보노이드 함량, 항산화 활성이 조사되었다. NaCl 농도가 80mM 이상일 때 갯방풍의 생육이 유의적으로 감소하였다. 두 번째 실험에서 엽수, 엽면적, 지상부와 지하부 건물중 같은 생육 특성은 수확 10일 전 50mM NaCl에서 유의적으로 우수했다. 광합성률은 대조구와 50mM NaCl 처리에서 가장 높게 나타났으며, 처리 시기와 관계없이 NaCl 농도가 100mM 이상일 때 유의적으로 감소하였다. 또한, 100mM 이상의 NaCl 농도에서 잎의 가시적 피해가 관찰되었다. 총 페놀함량 및 플라보노이드 함량은 수확 5일 전 200mM 처리에서 가장 높았다. 그러나, 항산화 활성은 대조구와 수확 10일 전 50mM 처리에서 가장 높았다. 결론적으로, 수경재배 시 양액에 수확 10일 전 50mM의 NaCl을 처리하는 것이 고품질 갯방풍 생산에 효과적이었다.

This study was conducted to investigate the effect of different NaCl concentrations and treatment timing on growth and bioactive compound content in Glehnia littoralis Fr. Schmidt ex Miquel. In the first experiment, seedlings were transplanted and grown during 30 days into a deep floating technique system (DFT system) on Hoagland solution (EC 1.5 dS·m-1 and pH 6.5) with 40, 80, 120, 160, and 200 mM NaCl in a greenhouse. In the second experiment, G. littoralis was grown during 50 days into DFT system, and treated 50, 100, 150, and 200 mM NaCl at 5 and 10 days before harvest (DBH), respectively. In both experiments, non-treatment was set as the control. Plant growth and photosynthetic characteristic, total phenolic contents, total flavonoid contents, and antioxidant activity were measured. When NaCl concentration was higher than 80 mM, growth of G. littoralis Fr. Schmidt ex Miquel was decreased. In the second experiment, growth characteristics, such as number of leaves, leaf area, dry weights of shoot and root were the highest in the 50 mM NaCl with 10 DBH. The photosynthetic rate was observed the highest in the control and 50 mM treatments, and significantly decreased in the NaCl concentration of more than 100 mM regardless of NaCl treatment timing. In addition, visible leaf injury was observed in the NaCl concentrations of more than 100 mM. The total phenolic and flavonoid concentrations were the highest in the 200 mM with 5 DBH treatment. However, antioxidant activity was the highest in the control and 50 mM with 10 DBH treatment. In conclusion, these results suggest that the application of 50 mM NaCl with 10 DBH on nutrient solution will be effective for cultivation of high quality and bioactive compound content of G. littoralis in a hydroponic system.

키워드

참고문헌

  1. Amor N.B., A. Jimenez, W. Megdiche, M. Lundqvist, F. Sevilla, and C. Abdelly 2006, Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiol Plant 126:446-457. doi:10.1111/j.1399-3054.2006.00620.x
  2. Bae J.J., H.S. Yoon, Y.S. Choo, and S.D. Song 2003, The responses of antioxidative enzymes and salt tolerance of Atriplex gmelini. Korean J Ecol 26:273-280. (in Korean) doi:10.5141/JEFB.2003.26.5.273
  3. Bernstein L. 1975, Effects of salinity and sodicity on plant growth. Annu Rev Phytopathol 13:295-312. doi:10.1146/annurev.py.13.090175.001455
  4. Bistgani Z.E., M. Hashemi, M. DaCosta, L. Craker, Maggi, and M.R. Morshedloo 2019, Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind Crops Prod. 135:311-320. doi:10.1016/j.indcrop.2019.04.055
  5. Bolu W.H., and A. Polle 2004, Growth and stress reactions in roots and shoots of a salt-sensitive poplar species (Populus x canescens). Trop Ecol 45:161-171.
  6. China Food and Drug Administration (CFDA). 1999, Chinese herbal medicine. Ed 7, Shanghai Science and Technology Publisher, Shanghai, China, pp 687-693.
  7. Choi H.Y., S.I. Lee, and Y. Suh 1997, PCR-mediated RFLP to indentify 'Bangpoong', a crude drug. Kor J Pharmacogn 28:1-8. (in Korean)
  8. Choi S.C., J.K. Kim, and Y.S. Choo 2013, Effects of salt stress on inorganic ions and glycine betaine contents in leaves of Beta vulgaris var. cicla L. Korean J Ecology and Environment 46:388-394. (in Korean) doi:10.11614/KSL.2013.46.3.388
  9. Choi Y., and M. Chiang 2017, Effect of jasmonic acid and NaCl on the growth of spearmint (Mentha spicata L.). Protected Hort Plant Fac 26:133-139. (in Korean) doi:10.12791/KSBEC.2017.26.2.133
  10. Choo B.K., Y.I. Ji, B.C. Moon, B.B. Kim, A.Y. Lee, T.S. Yoon, H.K. Song, and H.K. Kim 2008, Ecological characteristics and native preservation method of Glehnia littoralis community in Korea coast. J Korean Env Res & Reveg Tech 11:38-48. (in Korean)
  11. Gimenez C., V.J. Mitchell, and D.W. Lawlor 1992, Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physiol 98:516-524. doi:10.1104/pp.98.2.516
  12. Giuliano G., G.E. Bartley, P.A. Scolnik 1993, Regulation of carotenoid biosynthesis during tomato development. The Plant Cell 5:379-387. doi:10.1105/tpc.5.4.379
  13. Hoagland D.R., and D.I. Arnon 1950, The water-culture method for growing plants without plant, Ed 3, Univ Calif Agric Exp Stat Circular-347, CA, USA.
  14. Jang J.H., H.I. Shin, and J.S. Park 2019, Analysis of growth and functional substance for Cyperus rotundus and Glehnia littoralis by EC treatment in reclaimed soil conditions. Protected Hort Plant Fac 28:411-419. (in Korean) doi:10.12791/KSBEC.2019.28.4.411
  15. Kim D.W., H.Y. Heo, S.J. Suh, Y.H. Lee, and S.J. Kim 2006, Differentiation of barley response to drought and salt stress in antioxidant enzyme activity and free amino acid content. Korea J Crop Sci 51:133-138. (in Korean)
  16. Kim J.S., and T.K. Hyun 2011, Effect of NaCl stress on the growth, antioxidant materials, and inorganic ion content in head lettuce seedlings. Kor J Hort Sci Technol 29:433-440. (in Korean)
  17. Kim J.Y., P.M. Seong, D.B. Lee, and N.J. Chung 2019, Growth and physiological characteristics in a halophyte Suaeda glauca under different NaCl concentrations. Korean J Crop Sci 64:48-54. (in Korean) doi:10.7740/kjcs.2019.64.1.048
  18. Kim S.J., Y.W. Chin, K.D. Yoon, M.Y. Ryu, M.H. Yang, J.H. Lee, and J.W. Kim 2008, Chemical constituents of Saposhnikovia divaricata. Kor J Pharmacogn 39:357-364. (in Korean)
  19. Kumaran A., and R.J. Karunakaran 2007, In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. Food Sci Technol 40:344-352. doi:10.1016/j.lwt.2005.09.011
  20. Lee B.M., S.J. Shim, S.G. Lee, B.H. Kang, I.M. Chung, and K.H. Kim 1999, Physiological response on saline tolerance between halophytes and glycophytes. Korean J Environ Agric 18:61-65. (in Korean)
  21. Lee K.C., S.K. Han, K.K Yoon, H.B. Lee, and J.M. Song 2020, Effects of NaCl on the growth and physiological characteristics of Crepidiastrum sonchifolium (Maxim.) Pak & Kawano. Korean J Medicinal Crop Sci 28:1-8. (in Korean) doi: 10.7783/KJMCS.2020.28.1.1
  22. Lee K.C., and H.B. Lee 2018, Effects of NaCl on growth and physiological characteristics of Synurus deltoides (Aiton) Nakai. J Agric Life Sci 52:55-72. (in Korean) doi:10.14397/jals.2018.52.2.55
  23. Lee S.B., C.K. Kang, B.M. Lee, M.S. Kim, M.C. Cho, C.S. Choi, Y.J. Oh, J.S. Shim, D.Y. Choi, H.S. Nam, H.J. Jee, and M.K. Hong 2010, The salt tolerance of vegetable crops - red peppers and cucumber. Korean J Soil Sci Fert 263-263. (in Korean) https://doi.org/10.7745/KJSSF.2011.44.2.263
  24. Lee H.R. 2020, CO2 concentration and light intensity affect growth and bioactive compound content of medicinal plants grown in a closed-type plant production system. Master Dissertation, Gyeongsang National Univ., Jinju, Korea, pp 7-13.
  25. Lee S.G., J.S. Shin, Y.S. Seok, and G.K. Bae 1998, Effects of salt stress on photosynthesis, free proline content and ion content in tobacco. Korean J Environ Agric 17:215-219. (in Korean)
  26. Marschner H. 1995, Mineral nutrition of higher plant., Ed 2, Academic press, London, pp 662-663.
  27. Matthew A.J., and P.M. Hasegawa 2013, Plant abiotic stress, Ed 2, John Wiley & Sons, West Sussex, UK, pp 133-145.
  28. Moon J.H., Y.A. Jang, H.K. Yun, S.G. Lee, and J.W. Lee 2010, Determination of salt type, salt concentration, and salt application method and timing for suppression of stem elongation in grafted cucumber seedlings. Protected Hort Plant Fac. 19:317-323. (in Korean)
  29. Muller I,. B. Schmid, and J. Weiner 2000, The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect Plant Ecol Evol Syst 3:115-127. doi:10.1078/1433-8319-00007
  30. Osawa T. 1963, Studies on the salt tolerance of vegetable crops with special reference to osmotic effects and specific ion effects. J Jpn Soc Hortic Sci 32:211-223. doi:10.2503/jjshs.32.211
  31. Park W.J., B.S. Seo, C.M. Park, C.H. Choi, and S.M. Choi 2010, Growth responses of 4 species to NaCl concentration in artificial soil. Kor J Env Eco 24:735-743. (in Korean)
  32. Peng S., D.R. Krieg, and F.S. Girma 1991, Leaf photosynthetic rate is correlated with biomass and grain production in grain sorghum lines. Photosyn Res 28:1-7. doi:10.1007/BF00027171.
  33. Shabala S.G., H.H. Wu, and J.K. Bose 2015, Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis. Plant Sci 241:109-119. doi:10.1016/j.plantsci.2015.10.003
  34. Shannon M.C., and C.M. Grieve 1998, Tolerance of vegetable crops to salinity. Sci Hortic 78:5-38. doi:10.1016/s0304-4239(98)00189-7
  35. Shim D.H., K.J. Nam, and Y.H. Kim 2018, Analysis of antioxidant enzyme activity during seedling growth of Leymus chinensis Trin under salt and dehydration stresses. J Life Sci 28:772-777. (in Korean) doi:10.5352/JLS.2018.28.7.772
  36. Singleton V.L., and J.A. Rossi 1965, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144-158.
  37. Sohn Y.M., G.Y. Jeon, J.D. Song, J.H. Lee, and M.E. Park 2009, Effect of drip irrigation on soil salinity control and growth of cabbage at the newly reclaimed tidal lands in Korea. Korean J Soil Sci Fert 42:492-499. (in Korean)
  38. Song K.S., S.J. Kwon, J.H. Yoon, C.H. Kim, Y.B. Park, and J.J. Kim 2014, Characteristics of growth and root development of Peucedanum japonicum seedling by shading rate and container size. Korean J Medicinal Crop Sci 22:384-390. (in Korean) doi:10.7783/KJMCS.2014.22.5.384
  39. Termaat A., and R. Munns 1986, Use of concentrated macronutrient solutions to separate osmotic from NaCl-specific effects on plant growth. Aust J Plant Physiol 13:509-522. doi:10.1071/PP9860509
  40. Um Y.R., J.I. Lee, J.H. Lee, H.J. Kim, S.S. Yea, and Y.W. Seo 2010, Chemical constituents of the halophyte Glehnia littoralis. J Kor Chem Soc 54:701-706. (in Korean) doi:10.5012/jkcs.2010.54.6.701
  41. Yamaguchi T., H. Takamura, T. Matoba, and J. Terao 1998, HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-Diphenyl-2-picrylhydrazyl. Biosci Biotechnol Biochem 62:1201-1204. doi:10.1271/bbb.62.1201