DOI QR코드

DOI QR Code

A Novel Method for Improvement of Optical Space Surveillance Systems

광학 우주감시체계의 성능향상 방안

  • Cho, Taehwan (Defense Policy Research Center, Korea National Defense University) ;
  • Lee, Soungsub (Department of Aerospace System Engineering, Sejong University)
  • 조태환 (국방대학교 국방정책연구센터) ;
  • 이성섭 (세종대학교 항공우주시스템공학과)
  • Received : 2021.03.24
  • Accepted : 2021.04.28
  • Published : 2021.04.30

Abstract

The optical space surveillance systems are used for image capture and location tracking of space objects including satellites. Such an optical space surveillance systems have the advantage of capable of capturing high-level satellite images, but have a disadvantage in that its location tracking performance is lower than that of laser or radar space surveillance systems. Therefore, in this paper, we proposed a method to improve the location tracking performance of the satellite by reducing the location tracking error of the optical space surveillance systems. In this method, two Kalman filters were used to model the constant velocity circular motion and the acceleration motion, and the performance was improved by applying them to the data of the optical space surveillance systems. The proposed method in this paper shows an average of 17.34% improvement in performance.

광학 우주감시체계는 인공위성 등을 포함한 우주물체의 영상촬영 및 위치추적에 사용된다. 이러한 광학 우주감시체계는 높은 고도의 인공위성 영상 촬영이 가능하다는 장점이 있지만, 레이저나 레이다 우주감시체계에 비해 위치추적 성능이 떨어진다는 단점이 있다. 따라서 본 논문에서는 광학 우주감시체계의 위치추적 오차를 줄여 인공위성의 위치추적 성능을 높일 수 있는 기법을 제안하였다. 이 기법은 칼만필터를 2개 활용하여 등속원운동 및 가속운동을 모델링하였고, 광학 우주감시체계의 데이터에 이를 적용하여 성능을 개선하였다. 논문에서 제안한 기법을 적용했을 때 평균 17.34%의 성능향상이 있었다.

Keywords

References

  1. C. Y. Hwang and J. Lee, "Comparative analysis of space policy system between south Korea and the U.S.," Journal of Aerospace System Engineering, Vol. 15, No. 1, pp. 1-6, 2021. https://doi.org/10.20910/JASE.2021.15.1.1
  2. G. Scire, F. Santoni and F. Piergentili, "Analysis of orbit determination for space based optical space surveillance system," Advances in Space Research, Vol. 56, No. 3, pp. 421-428. 2015. https://doi.org/10.1016/j.asr.2015.02.031
  3. H. J. Lee and S. W. Lee, "Detection performance analysis of the telescope considering pointing angle command error," Journal of the Korea Institute of Information and Communication Engineering, Vol. 21, No. 1, pp. 237-243, 2017. https://doi.org/10.6109/jkiice.2017.21.1.237
  4. J. H. Lee, E. J. Choi et al., " Design of L-band-phased array radar system for space situational awareness," The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 29, No. 3, pp. 214-224, 2018. https://doi.org/10.5515/KJKIEES.2018.29.3.214
  5. T. Behling and K. McGruther, "Planning satellite reconnaissance to support military operations," American Intelligence Journal, Vol. 19, No. 3, pp. 13-21. 1999.
  6. J. Choi, J. H. Jo, H. S. Yim, E. J. Choi, S. K. Cho, and J. H. Park, "Optical tracking data validation and orbit estimation for sparse observations of satellites by the OWL-net," Sensors, Vol. 18, No. 6, pp. 1868-1889. 2018. https://doi.org/10.3390/s18061868
  7. LIG NEX1 homepage [Internet]. available: https://www.lignex1.com/web/kor/.
  8. L. Nicholas, and L. Johnson, "U.S. space surveillance," Advances in Space Research, Vol. 13, No. 8, pp. 5-20, 1993. https://doi.org/10.1016/0273-1177(93)90563-Q
  9. P. Faucher, R. Peldszus and A. Gravier, "Operational space surveillance and tracking in Europe," Journal of Space Safety Engineering, Vol. 7, No. 3, pp. 420-425, 2020. https://doi.org/10.1016/j.jsse.2020.07.005
  10. F. Auger, M. Hilairet, J. Guerrero, E. Monmasson, T. Orlowska-Kowalska and S. Katsura, "Industrial applications of the kalman filter: a review," IEEE Transactions on Industrial Electronics, Vol. 60, No. 12, pp. 5458-5471, 2013. https://doi.org/10.1109/TIE.2012.2236994
  11. T. L. Song, "Filtering theory," Journal of Institute of Control, Robotics and Systems, Vol. 9, No. 2, pp. 413-419, 2003.
  12. M. Pachter, and P. Chandler. "Universal linearization concept for extended kalman filters," IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 3, pp. 946-962, 1993. https://doi.org/10.1109/7.220942
  13. O. Straka, J. Dunik, and M. Simandl, "Unscented kalman filter with controlled adaptation," The International Federation of Automatic Control, Vol. 45, No. 16, pp. 906-911, 2012.
  14. T H. Cho, K. S. Kim, W. O. Yoon, and S. B. Choi, "The improvement of aircraft position information with the unscented kalman filter," International Journal of Database Theory and Application, Vol. 5, No. 2, pp. 75-82, 2012.
  15. H. A. P. Blom, and Y. Bar-Shalom, "The interacting multiple model algorithm for systems with markovian switching coefficients," IEEE Transactions on Automatic Control, Vol. 33, No. 8, pp. 780-783, 1988. https://doi.org/10.1109/9.1299
  16. Y. Boers and H. Driessen, "A multiple model multiple hypothesis filter for markovian switching systems," Automatica, Vol. 41, No. 4, pp. 709-716, 2015. https://doi.org/10.1016/j.automatica.2004.11.018
  17. H. Liu and W. Wu, "Interacting multiple model (IMM) fifth-degree spherical simplex-radial cubature kalman filter for maneuvering target tracking," Sensors, Vol 17. No. 6. pp. 1374-1385, 2017. https://doi.org/10.3390/s17061374
  18. D. Vallado, Fundamentals of Astrodynamics and Applications, 3rd ed. Berlin, Germany: Springer Science & Business Media, 2001.