DOI QR코드

DOI QR Code

Radio-Frequency Thermal Plasma Synthesis of LSCF Nano-Powders for Cathode Applications in IT-SOFC

고주파 유도결합 열플라즈마를 이용한 IT-SOFC용 LSCF 나노분말 합성 및 전기전도도 특성 평가

  • LEE, HOSANG (Graduate School of Flexible & Printable Electronics, Jeonbuk National University) ;
  • CHUNG, SANG-MIN (Department of Quantum System Engineering, Jeonbuk National University) ;
  • YANG, SHI-YOUNG (Graduate School of Flexible & Printable Electronics, Jeonbuk National University) ;
  • SEO, JUN-HO (Department of Quantum System Engineering, Jeonbuk National University)
  • 이호상 (전북대학교 유연인쇄전자전문대학원) ;
  • 정상민 (전북대학교 양자시스템공학과) ;
  • 양시영 (전북대학교 유연인쇄전자전문대학원) ;
  • 서준호 (전북대학교 양자시스템공학과)
  • Received : 2021.02.06
  • Accepted : 2021.04.12
  • Published : 2021.04.28

Abstract

This work investigates the characteristics of LSCF nano-powders prepared by RF thermal plasma method and the electrical conductivity of their sintered body. XRD graphs and FE-SEM images of the as-synthesized powders showed that single phase LSCF nano- particles were synthesized with the averaged sizes of ≤300 nm. TEM mapping images and ICP-MS data revealed that metal atoms, La, Sr, Co, Fe, were incorporated into a single particle with small difference of <3 wt% in global composition. In addition, the as-synthesized powders were pressed in the shape of disk and sintered at 1,100℃ for 3 hours. For the sintered body, electrical conductivities were measured for temperatures between 20℃ to 750℃ by using Van der Pauw method, showing high electrical conductivity of ≥300 S/cm at 750℃.

Keywords

Acknowledgement

본 연구는 2019년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(NRF-2016M1A2A2940152). 또한, 본 연구는 산업통상자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구입니다(20191510301420).

References

  1. A. Petric, P. Huang, and F. Tietz, "Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation", Solid State Ionics, Vol. 135, No. 1-4, 2000, pp. 719-725, doi: https://doi.org/10.1016/S0167-2738(00)00394-5.
  2. E. V. Tsipis and V. V. Kharton, "Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review", J. Solid State Electrochem., Vol. 12, 2008, pp. 1367-1391, doi: https://doi.org/10.1007/s10008-008-0611-6.
  3. C. Sun, R. Hui, and J. Roller, "Cathode materials for solid oxide fuel cells: a review", J. Solid State Electrochem., Vol. 14, 2010, pp. 1125-1144, doi: https://doi.org/10.1007/s10008-009-0932-0.
  4. M. Kwak, H. J. Choi, T. W. Kim, D. W. Seo, S. K. Woo, and S. D. Kim, "Redox stability and electrochemical performances of La0.6Sr0.4Fe1-xScxO3-δ for solid oxide cells interconnector", Trans Korean Hydrogen and New Energy Soc., Vol. 29. No. 3, 2018, pp. 274-279, doi: https://doi.org/10.7316/KHNES.2018.29.3.274.
  5. R. J. Bell, G. J. Millar, and J. Drennan, "Influence of synthesis route on the catalytic properties of La1-xSrxMnO3", Solid State Ionics, Vol. 131, No. 3-4, 2000, pp. 211-220, doi.: https://doi.org/10.1016/S0167-2738(00)00668-8.
  6. Q. Zhang, T. Nakagawa, and F. Saito, "Mechanochemical synthesis of La0.7Sr0.3MnO3 by grinding constituent oxides", J. Alloys Compd., Vol. 308, No. 1-2, 2000, pp. 121-125, doi: https://doi.org/10.1016/S0925-8388(00)00901-4.
  7. M. Ghouse, Y. Al-Yousef, A. Al-Musa, and M. F. Al-Otaibi, "Preparation of La0.6Sr0.4Co0.2Fe0.8O3 nanoceramic cathode powders for solid oxide fuel cell (SOFC) application", Int. J. Hydrog. Energy, Vol. 35, No. 17, 2010, pp. 9411-9419, doi: https://doi.org/10.1016/j.ijhydene.2010.04.144.
  8. E. Mostafavi, A. Babaei, and A. Ataie, "Synthesis of nanostructured La0.6Sr0.4Co0.2Fe0.8O3 perovskite by co-precipitation method", J. ultrafine grained nanostructured mater., Vol. 48, No. 1, 2015, pp. 45-52, doi: https://doi.org/10.7508/jufgnsm.2015.01.007.
  9. L. da Conceicao, A. M. Silva, N. F. P. Ribeiro, and M. M. V. M. Souza, "Combustion synthesis of La0.7Sr0.3Co0.5Fe0.5O3 (LSCF) porous materials for application as cathode in IT-SOFC", Mater. Res. Bull., Vol. 46, No. 2, 2011, pp. 308-314, doi: https://doi.org/10.1016/j.materresbull.2010.10.009.
  10. A. P. Jamale, A. Natoli, and L. D. Jadhav, "Synthesis of active electrocatalysts using glycine-nitrate chemistry", J. Phys. Chem. Solids, Vol. 148, 2021, pp. 109723, doi: https://doi.org/10.1016/j.jpcs.2020.109723.
  11. Y. M. Kim, K. H. Kim, B. Kim, and H. Choi, "Size and morphology manipulation of nickel nanoparticle in inductively coupled thermal plasma synthesis", J. Alloys Compd., Vol. 658, 2016, pp. 824-831, doi: https://doi.org/10.1016/j.jallcom.2015.10.136.
  12. J. H. Seo, D. U. Kim, J. S. Nam, S. H. Hong, S. B. Sohn, and S. M. Song "Radio frequency thermal plasma treatment for size reduction and spheroidization of glass powders used in ceramic electronic devices", J. Am. Ceram. Soc., Vol. 90, No. 6, 2007, pp. 1717-1722, doi: https://doi.org/10.1111/j.1551-2916.2007.01645.x.
  13. S. M. Song, H. S. Kim, K. J. Park, S. B. Sohn, Y. T. Kim, and K. H. Hur, "The effect of uni-nanoadditive manufactured using RF plasma processing on core-shell structure in MLCC", J. Korean Ceram. Soc., Vol. 46, No. 2, 2009, pp. 131-136, doi: https://doi.org/10.4191/kcers.2009.46.2.131.
  14. M. Y. Lee, J. S. Nam, and J. H. Seo, "Synthesis of Ni-CeO2 catalyst for the partial oxidation of methane using RF thermal plasma", Chinese J. Catal., Vol. 37, No. 5, 2016, pp. 743-749, doi: https://doi.org/10.1016/S1872-2067(15)61071-3.
  15. J. H. Seo and B. G. Hong, "Thermal plasma synthesis of nano-sized powders", Nucl. Eng. Technol., Vol. 44, No. 1, 2012, pp. 9-20, doi: https://doi.org/10.5516/NET.77.2012.002.
  16. T. Ishigaki, "Synthesis of functional oxide nanoparticles through RF thermal plasma processing", Plasma Chem. Plasma Process., Vol. 37, 2017, pp. 783-804, doi: https://doi.org/10.1007/s11090-017-9788-8.
  17. Y. Shen, V. A. B. Almeida, and F. Gitzhofer, "Preparation of nanocomposite GDC/LSCF cathode material for IT-SOFC by induction plasma spraying", J. Therm. Spray Technol., Vol. 20, 2011, pp. 145-153, doi: https://doi.org/10.1007/s11666-010-9583-z.
  18. L. Qian, J. Lin, and M. Yu "Parametric study on suspension behavior in an inductively coupled plasma", J. Therm. Spray Technol., Vol. 22, 2013, pp. 1024-1034, doi: https://doi.org/10.1007/s11666-013-9943-6.
  19. P. Fauchais, M. Vardelle, J. F. Coudert, A. Vardelle, C. Delbos, and J. Fazilleau, "Thermal plasma deposition from thick to thincoatings and from micro- to nanostructure", Pure Appl. Chem., Vol. 77, No. 2, 2005, pp. 475-485, doi: https://doi.org/10.1351/pac200577020475.
  20. M. W. Jr. Chase, "NIST-JANAF thermochemical tables part 1, Al-Co. Journal of Physical and Chemical Reference Data Monograph No. 9", 4th ed, American Chemical Society and the Americal Institute of Physics for the National Institute of Standards and Technology, USA, 1998, pp. 957.
  21. R. J. M. Konings, O. Benes, A. Kovacs, D. Manara, D. Sedmidubsky, L. Gorokhov, V. S. Iorish, V. Yungman, E. Shenyavskaya, and E. Osina, "The thermodynamic properties of the f-elements and their compounds. Part 2. The lanthanide and actinide oxides", J. Phys. Chem. Ref. Data, Vol. 43, No. 1, 2014, 013101, doi: https://doi.org/10.1063/1.4825256.
  22. A. Dutta, J. Mukhopadhyay, and R. N. Basu, "Combustion synthesis and characterization of LSCF-based materials as cathode of intermediate temperature solid oxide fuel cells", J. Eur. Ceram. Soc., Vol. 29, No. 10, 2009, pp. 2003-2011, doi: https://doi.org/10.1016/j.jeurceramsoc.2008.11.011.
  23. L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, and S. R. Sehlin "Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3", Solid State Ionics, Vol. 76, No. 3-4, 1995, pp. 259-271, doi: https://doi.org/10.1016/0167-2738(94)00244-M.
  24. L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, and S. R. Sehlin, "Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3", Solid State Ionics, Vol. 76, No. 3-4, 1995, pp. 273-283, doi: https://doi.org/10.1016/0167-2738(94)00245-N.