Acknowledgement
This work was supported by DGIST projects 21-BT-06, NRF-2021R1A2C1011314 and NRF-2018R1C1B6008955 from the National Research Foundation of Korea funded by the Ministry of Science, ICT of the Republic of Korea.
References
- Korsgren O, Jansson L, Sandler S et al (1990) Hyperglycemia-induced B cell toxicity. The fate of pancreatic islets transplanted into diabetic mice is dependent on their genetic background. J Clin Invest 86, 2161-2168 https://doi.org/10.1172/JCI114955
- Unger RH and Grundy S (1985) Hyperglycaemia as an inducer as well as a consequence of impaired islet cell function and insulin resistance: implications for the management of diabetes. Diabetologia 28, 119-121 https://doi.org/10.1007/BF00273856
- Marshak S, Leibowitz G, Bertuzzi F et al (1999) Impaired beta-cell functions induced by chronic exposure of cultured human pancreatic islets to high glucose. Diabetes 48, 1230-1236 https://doi.org/10.2337/diabetes.48.6.1230
- Donath MY, Gross DJ, Cerasi E et al (1999) Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 48, 738-744 https://doi.org/10.2337/diabetes.48.4.738
- Poitout V and Robertson RP (2008) Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr Rev 29, 351-366 https://doi.org/10.1210/er.2007-0023
- Kahn SE, Hull RL and Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840-846 https://doi.org/10.1038/nature05482
- Bonner-Weir S, Trent DF and Weir GC (1983) Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest 71, 1544-1553 https://doi.org/10.1172/JCI110910
- Del Prato S (2009) Role of glucotoxicity and lipotoxicity in the pathophysiology of type 2 diabetes mellitus and emerging treatment strategies. Diabetic Med 26, 1185-1192 https://doi.org/10.1111/j.1464-5491.2009.02847.x
- Mandrup-Poulsen T (2001) Beta-cell apoptosis: stimuli and signaling. Diabetes 50 Suppl 1, S58-S63 https://doi.org/10.2337/diabetes.50.2007.S58
- Kim WH, Lee JW, Suh YH et al (2005) Exposure to chronic high glucose induces β-cell apoptosis through decreased interaction of glucokinase with mitochondria. Diabetes 54, 2602-2611 https://doi.org/10.2337/diabetes.54.9.2602
- Piro S, Anello M, Di Pietro C et al (2002) Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism 51, 1340-1347 https://doi.org/10.1053/meta.2002.35200
- Viswanathan SR, Daley GQ and Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320, 97-100 https://doi.org/10.1126/science.1154040
- Viswanathan SR and Daley GQ (2010) Lin28a: a microRNA regulator with a macro role. Cell 140, 445-449 https://doi.org/10.1016/j.cell.2010.02.007
- Newman MA, Thomson JM and Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 47, 1539-1549
- Zhu H, Shyh-Chang N, Segre AV et al (2011) The Lin28/let7 axis regulates glucose metabolism. Cell 147, 81-94 https://doi.org/10.1016/j.cell.2011.08.033
- Yang DH and Moss EG (2003) Temporally regulated expression of Lin-28 in diverse tissues of the developing mouse. Gene Expr Patterns 3, 719-726 https://doi.org/10.1016/S1567-133X(03)00140-6
- Piskounova E, Polytarchou C, Thornton JE et al (2001) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147, 1066-1079 https://doi.org/10.1016/j.cell.2011.10.039
- Frost RJ and Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci U S A 108, 21075-21080 https://doi.org/10.1073/pnas.1118922109
- Balcazar Morales N and Aguilar de Plata C (2012) Role of AKT/mTORC1 pathway in pancreatic β-cell proliferation. Colomb Med 43, 235-243 https://doi.org/10.25100/cm.v43i3.783
- Tuttle RL, Gill NS, Pugh W et al (2001) Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt1/PKB. Nature Med 10, 71133-71137
- Kim DJ, Toda C, Ramirez CM et al (2017) Hypothalamic ventromedial Lin28a enhances glucose metabolism in diet-induced obesity. Diabetes 66, 2102-2111 https://doi.org/10.2337/db16-1558
- Park KG, Lee KM, Seo HY et al (2007) Glucotoxicity in the INS-1 rat insulinoma cell line is mediated by the orphan nuclear receptor small heterodimer partner. Diabetes 56, 431-437 https://doi.org/10.2337/db06-0753
- Kooptiwut S, Kaewin S and Semprasert N (2018) Estradiol prevents high glucose induced β-cell apoptosis by decreased BTG2 expression. Sci Rep 16, 12256 https://doi.org/10.1038/s41598-018-30698-x
- Chao DT and Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16, 395-419 https://doi.org/10.1146/annurev.immunol.16.1.395
- Mizuno N, Yoshitomi H, Ishida H et al (1998) Altered BCL-2 and Bax expression and intracellular Ca2+ signaling in apoptosis of pancreatic cells and the impairment of glucose-induced insulin secretion. Endocrinology 139, 1429-1439 https://doi.org/10.1210/en.139.3.1429
- Brown JE and Dunmore SJ (2007) Leptin decreases apoptosis and alters BCL-2: Bax ratio in clonal rodent pancreatic beta-cells. Diabetes Metab Res Rev 23, 497-502 https://doi.org/10.1002/dmrr.726
- Wrede CE, Dickson LM, Lingohr MK et al (2002) Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1). J Biol Chem 277, 49676-49684 https://doi.org/10.1074/jbc.M208756200
- Wijesekara N, Krishnamurthy M, Bhattacharjee A et al (2010) Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem 285, 33623-33631 https://doi.org/10.1074/jbc.M109.085084
- Bernal-Mizrachi E, Wen W, Stahlhut S et al (2001) Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 108, 1631-1638 https://doi.org/10.1172/JCI200113785
- Sung Y, Jeong J, Kang RJ et al (2019) Lin28a expression protects against streptozotocin-induced β-cell destruction and prevents diabetes in mice. Cell Biochem Funct 37, 139-147 https://doi.org/10.1002/cbf.3376
- Zhang M, Niu X, Hu J et al (2014) Lin28a protects against hypoxia/reoxygenation induced cardiomyocytes apoptosis by alleviating mitochondrial dysfunction under high glucose/high fat conditions. PLoS One 9, e110580 https://doi.org/10.1371/journal.pone.0110580
- Jung GS, Hwang YJ, Choi JH et al (2020) Lin28a attenuates TGF- β-induced renal fibrosis. BMB Rep 53, 594-599 https://doi.org/10.5483/BMBRep.2020.53.11.153