DOI QR코드

DOI QR Code

아두이노 활용 초등 교육 프로그램의 효과에 대한 메타분석

The Meta-Analysis on Effects of Elementary Education Programs Adopting Arduino

  • 장봉석 (국립목포대학교 교육학과)
  • 투고 : 2021.03.30
  • 심사 : 2021.04.20
  • 발행 : 2021.04.30

초록

이 연구는 아두이노를 활용한 초등 교육 프로그램의 효과를 메타분석으로 종합하기 위해 실시되었다. 자료 분석을 위해 선행 학위 논문과 학술지 논문 12편이 선정되었다. 연구 결과는 다음과 같다. 첫째, 아두이노 활용 초등 교육의 전체 효과크기는 0.519로 나타났다. 둘째, 학년에 따른 효과크기는 5학년 0.737, 5학년과 6학년 통합 0.533, 6학년 0.472의 순이었다. 셋째, 학생 수준에 따른 효과크기는 영재학생 0.607, 일반학생 0.522의 순이었다. 넷째, 교과 영역에 따른 효과크기는 환경 0.708, 소프트웨어 0.572, 실과 0.526, 과학 0.523, 융합 0.402, 미술 0.18의 순이었다. 다섯째, 프로그래밍 유형에서는 그래픽 기반 프로그래밍 0.555, 텍스트 기반 및 그래픽 기반 프로그래밍 0.47, 텍스트 기반 프로그래밍 0.464의 순이었다. 여섯째, 교육과정 유형에 따라 비정규 교육과정 0.636, 정규 교육과정 0.51의 순이었다.

This study was designed to implement the meta-analysis for figuring out effects of elementary education programs adopting Arduino. The researcher carefully chose and analyzed 12 primary studies including theses, dissertations, and journal articles. Results were as follows. First, the total effect size of elementary education programs adopting Arduino was 0.519. Second, the effect sizes by the grade levels were 5th grade 0.737, integration of 5th and 6th grade 0.533, and 6th grade 0.472 in order. Third, for status of students, the effect sizes were gifted and talented 0.607 and normal 0.522 in order. Fourth, for subject areas, the effect sizes were environment 0.708, software 0.572, practical arts 0.526, science 0.523, integrated 0.402, and fine arts 0.18 in order. Fifth, for types of programming, the effect sizes were graphic based programming 0.555, text and graphic based programming 0.47, and text based programming 0.464 in order. Sixth, for curriculum types, the effect sizes were extra curriculum 0.636 and regular curriculum 0.51 in order.

키워드

참고문헌

  1. M. Csikszentmihalyi, Creativity: Flow and the Psychology of Discovery and Invention, Harper Perennial, 2013.
  2. UK Department for Education, National Curriculum in England: Computing Programmes of Study, London, UK, 2013.
  3. Korea Department of Education, 2015 National Revised Curriculum, Sejong, Korea, 2015.
  4. A. Salomsbury, Arduino: 2021 Updated User Guide to Learn Arduino Programming Step by Step, Independently Published, 2021.
  5. H. M. Cooper, "Research synthesis and meta-analysis: A step by step approach," (4th ed.). Thousand Oaks, CA: Sage, 2009.
  6. J. Blum, Exploring Arduino: Tools and Techniques for Engineering Wizardry, Wiley, 2019.
  7. Arduino Official Store, [Internet] Available: https://store.arduino.cc/usa/arduino-uno-rev3, 2021.
  8. P. Jamieson, "Arduino for teaching embedded systems. Are computer scientists and engineering educators missing the boat?," in Proceedings of the International Conference on Frontiers in Education: Computer Science and Computer Engineering (FECS), pp. 289-294, 2011.
  9. H. M. Cooper, L. V. Hedges, and J. Valentine, The Handbook of Research Synthesis and Meta-Analysis, NY: Russell Sage Foundation, 2008.
  10. R. Orwin, "A fail-safe N of effect size in meta-analysis," Journal of Educational and Behavioral Statistics, vol. 8, no. 2, pp. 157- 159, June 1983.
  11. J. Cohen, Statistical power analysis for the behavioral sciences 2nd ed. Hillsdale, NJ: Erlbaum, 1988.
  12. G. W. Jung, "An application and analysis of the visual and textual programming languages for the microcontroller education," Master's thesis, Seoul National University of Education, Seoul, 2015.