DOI QR코드

DOI QR Code

Comparison of MIROC5 and MIROC6 projections for precipitation over South Korea

MIROC5와 MIROC 6의 우리나라 미래 강수량 예측 비교

  • Chae, Seung Taek (Department Civil Engineering, Seoul National University of Science and Technology) ;
  • Song, Young Hoon (Department Civil Engineering, Seoul National University of Science and Technology) ;
  • Chung, Eun-Sung (Department Civil Engineering, Seoul National University of Science and Technology)
  • 채승택 (서울과학기술대학교 건설시스템공학과) ;
  • 송영훈 (서울과학기술대학교 건설시스템공학과) ;
  • 정은성 (서울과학기술대학교 건설시스템공학과)
  • Received : 2021.01.14
  • Accepted : 2021.03.03
  • Published : 2021.04.30

Abstract

This study projected the monthly precipitation for RCP4.5 and RCP8.5 of the MIROC5 and SSP2-4.5 and SSP5-8.5 of MIROC6 GCMs using observations of the historical period (1970 to 2005) of 21 stations in Korea, and then compared the performance before and after bias correction using 6 evaluation indicators. In addition, using the bias corrected GCM's scenarios, annual precipitation, summer precipitation and winter precipitation in near future period (2021-2060) and far future period (2061-2100) were calculated. Furthermore, the variability of future projection was quantified using the standard deviation and interquartile range values of future precipitation. As a result the rate of change of precipitation was greater in the northern region than in the southern region and in the far future rather than the near future. The variability in the projection were also concluded to be larger in the northern region than that in the southern regions.

본 연구에서는 MIROC5와 MIROC6 GCM을 대상으로 우리나라 21개의 관측소의 과거 기간(1970년 ~ 2005년) 관측 값을 이용하여 과거 월 강수량을 모의한 뒤 6개의 평가 지표를 사용하여 편이보정 전후의 성능을 비교하였다. 또한 편이 보정된 GCM의 RCP4.5, RCP8.5 그리고 SSP2-4.5, SSP5-8.5 시나리오를 이용하여 가까운 미래 기간(2021년 ~ 2060년)과 먼 미래 기간(2061년 ~ 2100년)별로 연 강수량, 여름철 강수량, 겨울철 강수량 변화율을 산정하였다. 더 나아가 산정된 미래 강수량의 표준편차와 사분범위 값을 이용하여 미래 예측 값의 변동성을 확인하였다. 분석 결과 강수의 변화율은 남부 지역보다는 북부 지역에서 그리고 가까운 미래보다는 먼 미래에서 크게 나타났다. 변동성의 경우도 가까운 미래와 먼 미래 모두 남부 지역보다는 북부 지역에서 크게 나타남을 확인하였다.

Keywords

Acknowledgement

본 연구는 4단계 BK21 사업의 지원을 받아 수행되었습니다.

References

  1. Chen, Z., Zhou, T., Zhang, L., Chen, X., Zhang, W., and Jiang, J. (2020). "Global land monsoon precipitation changes in CMIP6 projection." Geophysical Research Letters, Vol. 47, pp. 1-9.
  2. Getirana, A.C.V., and Peters-Lidard, C. (2013). "Estimating water discharge from large radar altimetry datasets." Hydrology and Earth System Sciences, Vol. 17, pp. 923-933. https://doi.org/10.5194/hess-17-923-2013
  3. Golmohammadi, G., Prasher, S., Madani, A., and Rudra, R. (2014). "Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT." Hydrology, Vol. 1, No. 1, pp. 20-39. https://doi.org/10.3390/hydrology1010020
  4. Greve, P., Kahil, T., Mochizuki, J., Schinko, T., Satoh, Y., Burek, P., Fischer, G., Tramberend, S., Burtscher, R., Langan, S., and Wada, Y. (2018). "Global assessment of water challenges under uncertainty in water scarcity projections." Nature Sustainability, Vol. 1, pp. 486-494. https://doi.org/10.1038/s41893-018-0134-9
  5. Gudmundsson, L., Bremnes, J.B., Haugen, J.E., and Engen-Skaugen, T. (2012). "Technical note: Downscaling RCM precipitation to the station scale using statistical transformations-a comparison of methods." Hydrology and Earth System Sciences, Vol. 16, No. 9, pp. 3383-3390. https://doi.org/10.5194/hess-16-3383-2012
  6. Hashino, T., Bradley, A.A., and Schwartz, S.S. (2006) "Evaluation of bias-correction methods for ensemble streamflow." Hydrology and Earth System Scieces Discussion, Vol. 3, No. 2, pp. 561-594.
  7. Hawkins, E., and Sutton, R. (2009). "The potential to narrow uncertainty in reginal climate predictions." Bulletin of the American Meteorological Society, Vol. 90, pp. 1095-1108. https://doi.org/10.1175/2009bams2607.1
  8. Homsi, R., Shiru, M,S., Shahid, S., Ismail, T., Harun, S.B., Al-Ansar, N., Chau, K.W., and Yaseen, Z.M. (2020). "Precipitation projection using a CMIP5 GCM ensemble model: A regional investigation of Syria." Engineering Applications of Computational Fluid Mechanics, Vol. 14, No. 1, pp. 90-16. https://doi.org/10.1080/19942060.2019.1683076
  9. Hong, H.P., Park, S.Y., Kim, T.W., and Lee, J.H. (2018). "Assessment of CMIP5 GCMs for future extreme drought analysis." Journal of Korea Water Resources Association, Vol. 51, No. 7, pp. 617-627. https://doi.org/10.3741/JKWRA.2018.51.7.617
  10. Hwang, S.W. (2014). "Assessing the performance of CMIP5 GCMs for various climatic elements and indicators over the southeast US." Journal of Korea Water Resources Association, Vol. 47, No. 11, pp. 1039-1050. https://doi.org/10.3741/JKWRA.2014.47.11.1039
  11. Jung, I.G., Eum, H.I., Lee, E.J., Park, J.H., and Cho, J.P. (2018). "Development of representative GCMs selection technique for uncertainty in climate change scenario." Journal of Korean Society of Agricultural Engineers, Vol. 60, No. 5, pp. 149-162. https://doi.org/10.5389/KSAE.2018.60.5.149
  12. Khan, N., Shahid, S., Ahmed, K., Ismail, T., Nawaz, N., and Son, M. (2018). "Performance assessment of general circulation model in simulating daily precipitation and temperature using multiple gridded datasets." Water, Vol. 10, pp. 1793-1811. https://doi.org/10.3390/w10121793
  13. Kim, J.H., Ivanov, V.Y., and Fatichi, S. (2015). "Climate change and uncertainty assessment over a hydroclimatic transect of Michigan." Stochastic Environmental Research and Risk Assessment, Vol. 30, pp. 923-944. https://doi.org/10.1007/s00477-015-1097-2
  14. Kim, J.H., Sung, J.H., Chung, E.S., Kim, S.U., Son, M., and Shiru, M.S. (2021). "Comparison of projection in meteorological and hydrological droughts in the Cheongmicheon watershed for RCP4.5 and SSP2-4.5." Sustainability, Vol. 13, No. 4, 2066. https://doi.org/10.3390/su13042066
  15. Koenker, R., and Schorfheide, F. (1994). "Quantile spline models for global temperature change." Climate Change, Vol. 28, pp. 395-404. https://doi.org/10.1007/BF01104081
  16. Lee, S.H., Yoo, S.H., Choi, J.Y., and Hwang, S.W. (2018). "GCM-related uncertainty in forecasting irrigation and design water requirement for paddy rice fields." International Journal of Climatology, Vol. 38, pp. 1298-1313. https://doi.org/10.1002/joc.5244
  17. Meehl, G.A., Boer, G.J., Covey, C., Latif, M., and Stouffer, R.J. (2000). "The coupled model intercomparison project (CMIP)." Bulletin of the American Meteorological Society, Vol. 81, No. 2, pp. 313-318. https://doi.org/10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2
  18. Mishra, V., Bhatia, U., and Tiwari, A.D. (2020). "Bias-corrected climate projections for South Asia from coupled model intercomparison project-6." Scientific Data, Vol. 7, pp. 338-369. https://doi.org/10.1038/s41597-020-00681-1
  19. Moriasi, D.N., Gitau, M.W., Pai, N., and Daggupati, P. (2015). "Hydrologic and water quality models: Performance measures and evaluation criteria." American Society of Agricultural and Biological Engineers, Vol. 58, No. 6, pp. 1763-1785.
  20. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through. Part I. A conceptual models discussion of principles." Journal of Hydrology. Vol. 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  21. O'Neill, B.C., Kriegler, E., Riahi, K., Ebi, K.L., Hallegatte, S., Carter, T.R., Mathur, R., and van Vuuren, D.P. (2014). "A new scenario framework for climate change research: The concept of shared socioeconomic pathways." Climate Change, Vol. 122, pp. 387-400. https://doi.org/10.1007/s10584-013-0905-2
  22. Schepen, A., and Wang, Q.J. (2013). "Toward accurate and reliable forecasts of Australian seasonal rainfall by calibrating and merging multiple coupled GCMs." Monthly Weather Review, Vol. 141, pp. 4554-4563. https://doi.org/10.1175/MWR-D-12-00253.1
  23. Scoccimarro, E., and Gualdi, S. (2020). "Heavy daily precipitation events in the CMIP6 worst-case scenario: Projected twenty-first-century changes." Journal of Climate, Vol. 33, pp. 7631-7642. https://doi.org/10.1175/JCLI-D-19-0940.1
  24. Song, Y.H., and Chung, E.S. (2020). "Intercomparison of uncertainty to bias correction methods and GCM selection in precipitation projections." Journal of Korea Water Resources Association, Vol. 53, No. 4, pp. 249-258. https://doi.org/10.3741/JKWRA.2020.53.4.249
  25. Song, Y.H., Chung, E.S., and Shiru, M.S. (2020). "Uncertainty analysis of monthly precipitation in GCMs using multiple bias correction methods under different RCPs." Sustainability, Vol. 12, No. 18, 7508. https://doi.org/10.3390/su12187508
  26. Song, Y.H., Nashwan, M.S., Chung, E.S., and Shahid, S. (2021). "Advances in CMIP6 INM-CM5 over CMIP5 INM-CM4 for precipitation simulation in South Korea." Atmospheric Research, Vol. 247, pp. 1-14.
  27. Taylor, K.E. (2001). "Summarizing multiple aspects of model performance in a single diagram." Journal of Geophysical Research, Vol. 106, No. 7, pp. 7183-7192. https://doi.org/10.1029/2000JD900719
  28. Tobler, W.R. (1970). "A computer movie simulating urban growth in the detroit region." Economic Geography, Vol. 46, pp. 234-240. https://doi.org/10.2307/143141
  29. Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., Huang, A., Zhang, Y., and Liu, X. (2019). "The Beijing climate center climate system model (BCCCSM): The main progress from CMIP5 to CMIP6." Geoscientific Model Development, Vol. 12, pp. 1573-1600. https://doi.org/10.5194/gmd-12-1573-2019
  30. Xin, X., Wu T., Zhang, J., Yao, J., and Fang, Y. (2020). "Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon." International Journal of Climatology, Vol. 40, pp. 6423-6440. https://doi.org/10.1002/joc.6590