DOI QR코드

DOI QR Code

Cell Lineage, Self-Renewal, and Epithelial-to-Mesenchymal Transition during Secondary Neurulation

  • Received : 2021.02.25
  • Accepted : 2021.04.07
  • Published : 2021.05.01

Abstract

Secondary neurulation (SN) is a critical process to form the neural tube in the posterior region of the body including the tail. SN is distinct from the anteriorly occurring primary neurulation (PN); whereas the PN proceeds by folding an epithelial neural plate, SN precursors arise from a specified epiblast by epithelial-to-mesenchymal transition (EMT), and undergo self-renewal in the tail bud. They finally differentiate into the neural tube through mesenchymal-to-epithelial transition (MET). We here overview recent progresses in the studies of SN with a particular focus on the regulation of cell lineage, self-renewal, and EMT/MET. Cellular mechanisms underlying SN help to understand the functional diversity of the tail in vertebrates.

Keywords

References

  1. Catala M : Genetic control of caudal development. Clin Genet 61 : 89-96, 2002 https://doi.org/10.1034/j.1399-0004.2002.610202.x
  2. Catala M, Teillet MA, Le Douarin NM : Organization and development of the tail bud analyzed with the quail-chick chimaera system. Mech Dev 51 : 51-65, 1995 https://doi.org/10.1016/0925-4773(95)00350-A
  3. Colas JF, Schoenwolf GC : Towards a cellular and molecular understanding of neurulation. Dev Dyn 221 : 117-145, 2001 https://doi.org/10.1002/dvdy.1144
  4. Criley BB : Analysis of embryonic sources and mechanims of development of posterior levels of chick neural tubes. J Morphol 128 : 465-501, 1969 https://doi.org/10.1002/jmor.1051280406
  5. Dady A, Havis E, Escriou V, Catala M, Duband JL : Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 34 : 13208-13221, 2014 https://doi.org/10.1523/JNEUROSCI.1850-14.2014
  6. Garcia-Martinez V, Darnell DK, Lopez-Sanchez C, Sosic D, Olson EN, Schoenwolf GC : State of commitment of prospective neural plate and prospective mesoderm in late gastrula/early neurula stages of avian embryos. Dev Biol 181 : 102-115, 1997 https://doi.org/10.1006/dbio.1996.8439
  7. Gouti M, Delile J, Stamataki D, Wymeersch FJ, Huang Y, Kleinjung J, et al. : A gene regulatory network balances neural and mesoderm specification during vertebrate trunk development. Dev Cell 41 : 243-261.e7, 2017 https://doi.org/10.1016/j.devcel.2017.04.002
  8. Gouti M, Tsakiridis A, Wymeersch FJ, Huang Y, Kleinjung J, Wilson V, et al. : In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol 12 : e1001937, 2014 https://doi.org/10.1371/journal.pbio.1001937
  9. Griffith CM, Wiley MJ, Sanders EJ : The vertebrate tail bud: three germ layers from one tissue. Anat Embryol (Berl) 185 : 101-113, 1992 https://doi.org/10.1007/BF00185911
  10. Guillot C, Michaut A, Rabe B, Pourquie O : Dynamics of primitive streak regression controls the fate of neuro-mesodermal progenitors in the chicken embryo. bioRxiv, 2020 [Epub ahead of print]
  11. Holmdahl DE : Die Morphogenese des Vertebratorganismus vom formalen und experimentellen Gesichtspunkt. W Roux' Archiv f Entwicklungsmechanik 139 : 191-226, 1939 https://doi.org/10.1007/BF00576388
  12. Iimura T, Pourquie O : Collinear activation of Hoxb genes during gastrulation is linked to mesoderm cell ingression. Nature 442 : 568-571, 2006 https://doi.org/10.1038/nature04838
  13. Kardong KV : Vertebrates: Comparative Anatomy, Function, Evolution, 4th ed. New York : McGraw-Hill College, 2005
  14. Kawachi T, Shimokita E, Kudo R, Tadokoro R, Takahashi Y : Neural-fated self-renewing cells regulated by Sox2 during secondary neurulation in chicken tail bud. Dev Biol 461 : 160-171, 2020 https://doi.org/10.1016/j.ydbio.2020.02.007
  15. Nievelstein RA, Hartwig NG, Vermeij-Keers C, Valk J : Embryonic development of the mammalian caudal neural tube. Teratology 48 : 21-31, 1993 https://doi.org/10.1002/tera.1420480106
  16. Nikolopoulou E, Galea GL, Rolo A, Greene ND, Copp AJ : Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144 : 552-566, 2017 https://doi.org/10.1242/dev.145904
  17. Olivera-Martinez I, Harada H, Halley PA, Storey KG : Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation. PLoS Biol 10 : e1001415, 2012 https://doi.org/10.1371/journal.pbio.1001415
  18. Pasteels J : Etudes sur la gastrulation des vertebres meroblastiques. III. Oiseaux. IV Conclusions generales. Arch Biol 48 : 381-488, 1937
  19. Romanos M, Allio G, Combres L, Medevielle F, Escalas N, Soula C, et al. : Cell-to-cell heterogeneity in Sox2 and Brachyury expression ratios guides progenitor destiny by controlling their motility. bioRxiv, 2020 [Epub ahead of print]
  20. Saitsu H, Yamada S, Uwabe C, Ishibashi M, Shiota K : Development of the posterior neural tube in human embryos. Anat Embryol (Berl) 209 : 107-117, 2004 https://doi.org/10.1007/s00429-004-0421-2
  21. Shaker MR, Lee JH, Kim KH, Kim JV, Kim JY, Lee JY, et al. : Spatiotemporal contribution of neuromesodermal progenitor-derived neural cells in the elongation of developing mouse spinal cord. bioRxiv, 2020 [Epub ahead of print]
  22. Shimokita E, Takahashi Y : Secondary neurulation: fate-mapping and gene manipulation of the neural tube in tail bud. Dev Growth Differ 53 : 401-410, 2011 https://doi.org/10.1111/j.1440-169X.2011.01260.x
  23. Takemoto T, Uchikawa M, Yoshida M, Bell DM, Lovell-Badge R, Papaioannou VE, et al. : Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature 470 : 394-398, 2011 https://doi.org/10.1038/nature09729
  24. Tucker AS, Slack JM : Tail bud determination in the vertebrate embryo. Curr Biol 5 : 807-813, 1995 https://doi.org/10.1016/S0960-9822(95)00158-8
  25. Tzouanacou E, Wegener A, Wymeersch FJ, Wilson V, Nicolas JF : Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell 17 : 365-376, 2009 https://doi.org/10.1016/j.devcel.2009.08.002
  26. Uchikawa M, Yoshida M, Iwafuchi-Doi M, Matsuda K, Ishida Y, Takemoto T, et al. : B1 and B2 Sox gene expression during neural plate development in chicken and mouse embryos: universal versus species-dependent features. Dev Growth Differ 53 : 761-771, 2011 https://doi.org/10.1111/j.1440-169X.2011.01286.x
  27. Watanabe T, Saito D, Tanabe K, Suetsugu R, Nakaya Y, Nakagawa S, et al. : Tet-on inducible system combined with in ovo electroporation dissects multiple roles of genes in somitogenesis of chicken embryos. Dev Biol 305 : 625-636, 2007 https://doi.org/10.1016/j.ydbio.2007.01.042
  28. Wymeersch FJ, Huang Y, Blin G, Cambray N, Wilkie R, Wong FC, et al. : Position-dependent plasticity of distinct progenitor types in the primitive streak. Elife 5 : e10042, 2016 https://doi.org/10.7554/elife.10042