Abstract
The tidal current patterns at Keum River Estuary before and after the construction of coastal structures were compared according to the CASES. The depth-integrated and tidal difference treatment applied FLOW2DH numerical model was used for the tidal current predictions. The test conditions consisted of before construction of coastal structures (CASE1), after construction of coastal structures (CASE2), and the addition of watergate operation(CASE1Q and CASE2Q), and present (CASE3). CASE1 showed a stable tidal current pattern, such as a natural estuary. In CASE2, the tidal current velocities and directions of the Keum River Estuary were changed due to the installed coastal structures. In particular, the tidal current velocities of the Gaeya open channel sections (P5~P9) in CASE2 were calculated to be 10~30% larger than that of CASE1. In the case of the Gunsan Inner Harbor (P4), which is closest to the Geum River Estuary, the ebb flow rate was approximately 250~300% faster than that of other CASEs due to the discharge of the watergate operation for 2.7 hours during the ebb of CASE1Q and CASE2Q. This will affect sediment transport, and it is predicted to lead to seabed changes. CASE3 is considered to be entering the stabilization stage according to the simulation of the tidal current velocities and directions of the Keum River Estuary and the surrounding coastal area.
해안구조물 설치 전, 후의 금강하구역 해수유동 양상을 CASE별로 비교하기 위해서 수심적분된 그리고 조간대 처리기법이 적용된 해수유동 수치모형인 FLOW2DH를 사용하였다. 실험조건은 해안구조물 설치 전(CASE1), 해안구조물 설치 후(CASE2), 배수갑문운영 추가(CASE1Q, CASE2Q) 및 현재 상태(CASE3)로 구성된다. CASE1의 경우, 자연형 하구의 안정화된 해수유동 양상을 보여주고 있고, CASE2의 경우, 설치된 해안구조물들로 인하여 금강하구역의 유속 및 유향에 변화가 발생하였다. 특히, CASE2의 개야수로 구간(P5~P9)은 CASE1과 대비하여 유속이 10~30% 크게 계산되었다. 금강하굿둑과 가장 가까운 군산 내항(P4)의 경우는, CASE1Q와 CASE2Q의 낙조 시 2.7시간의 배수갑문의 방류로 인하여 낙조 유속이 다른 CASE들과 비교하여 약 250~300% 빨라졌다. 이는 퇴적물이동에 영향을 줄 것이고, 나아가 해저지형변화를 야기할 것으로 예측된다. 현재 상태인 CASE3의 경우, 금강하구와 주변 해안역의 유속과 유향을 검토한 결과 안정화 단계로 접어들고 있는 것으로 판단된다.