• Title/Summary/Keyword: Seabed Change

Search Result 62, Processing Time 0.027 seconds

Morphological Change in Seabed Surrounding Jinwoo-Island Due to Construction of New Busan Port - Qualitative Evaluation through Numerical Simulation (부산신항 건설이 진우도 주변 해저지형 변화에 미치는 영향 - 수치실험을 통한 정성적 평가)

  • Hong, Namseeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.192-201
    • /
    • 2018
  • In this study, a qualitative evaluation of the morphological changes in the seabed surrounding Jinwoo-Island due to the construction of the new Busan port were determined through a numerical simulation. Various scenarios for the discharge of the Nakdong river estuary dam and construction stage of the new Busan port were established and utilized for an indirect and qualitative investigation through simulation using the numerical model implemented in this study. It was concluded through a qualitative study that the morphological changes in the seabed surrounding Jinwoo-Island were typical estuary seabed changes due to the discharge of the Nakdong river estuary dam and waves from the open sea. The effects from the construction of the new Busan port were relatively small.

3-D Dynamic Response Characteristics of Seabed around Composite Breakwater in Relation to Wave-Structure-Soil Interaction (파랑-구조물-지반 상호작용에 의한 혼성제 주변 해저지반의 3차원 동적응답 특성)

  • Hur, Dong-Soo;Park, Jong-Ryul;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.505-519
    • /
    • 2016
  • If the seabed is exposed to high waves for a long period, the pore water pressure may be excessive, making the seabed subject to liquefaction. As the water pressure change due to wave action is transmitted to the pore water pressure of the seabed, a phase difference will occur because of the fluid resistance from water permeability. Thus, the effective stress of the seabed will be decreased. If a composite breakwater or other structure with large wave reflection is installed over the seabed, a partial standing wave field is formed, and thus larger wave loading is directly transmitted to the seabed, which considerably influences its stability. To analyze the 3-D dynamic response characteristics of the seabed around a composite breakwater, this study performed a numerical simulation by applying LES-WASS-3D to directly analyze the wave-structure-soil interaction. First, the waveform around the composite breakwater and the pore water pressure in the seabed and rubble mound were compared and verified using the results of existing experiments. In addition, the characteristics of the wave field were analyzed around the composite breakwater, where there was an opening under different incident wave conditions. To analyze the effect of the changed wave field on the 3-D dynamic response of the seabed, the correlation between the wave height distribution and pore water pressure distribution of the seabed was investigated. Finally, the numerical results for the perpendicular phase difference of the pore water pressure were aggregated to understand the characteristics of the 3-D dynamic response of the seabed around the composite breakwater in relation to the water-structure-soil interaction.

Numerical Analysis of Waves coming with Oblique Angle to Submerged Breakwater on the Porous Seabed (침투층 위의 잠제에 경사각을 가지고 입사하는 파랑의 수치해석)

  • Kim, Nam-Hyeong;Woo, Su-Min
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.283-289
    • /
    • 2013
  • Wave profiles coming with oblique angle to trapezoidal submerged breakwater on the porous seabed are computed numerically by using a boundary element method. The analysis method is based on the wave pressure function with the continuity in the analytical region including fluid and structure. When compared with the existing results on the oblique incident wave, the results of this study show good agreement. The fluctuation of wave profiles is increased in the rear of the submerged breakwater due to the increase of the transmission coefficient, as the incident angle increases. In addition, in the case of the wave profiles passing over the submerged breakwater on porous seabed, it is able to verify that the attenuation of wave height occurs more significantly due to the wave energy dissipation than that of passing over the submerged breakwater on the impermeable seabed. The results indicate that wave profile own high dependability regarding the change of oblique incident waves and porous seabed. Therefore, the results of this study are estimated to be applied as an accurate numerical analysis referring to oblique incident waves and porous seabed in real sea environment.

Variation of Physical Characteristic of Tidal Flat's Environment by Water Level Change (수위변동에 따른 갯벌의 물리적 환경특성의 변화)

  • Park, Jong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • This paper described the results of the characteristics of the near-bottom flow and field analysis of the tidal flats sediment. It was the aim of this paper to grasp current flow of tidal flat's environment and influence factor for environmental change forecast of tidal flats. Field measurement of water velocity, water elevation, bed materials test, and temperature distribution of tidal flat were conducted. Thereafter, current flow, turbidity and temperature distribution of tidal flat sediment have been discussed. The field research results showed that the fluctuating velocity near the seabed before and after its appearance at low tide was strongly affected by the wind wave. The resuspension of the sea-bottom sediment took place with great intensity before and after the appearance of the seabed at low tide. Both the sea water level and the weather condition were a significant influential factors. Such as, temperature and turbidity just on the surface and the shallow layer of seabed sediments were varied largely with time and weather conditions, but that its deeper layers was almost constant. Temperature on the seabed sediments was strongly influenced by irradiance and water depth. The temperature variation of the tidal flat and the variation characteristics of the current flow and turbidity depend greatly on the inhabiting environment of the tidal flat benthic organism.

  • PDF

Numerical Analysis of Waves Profiles coming with Oblique Angle to Permeable Submerged Breakwater on the Porous Seabed

  • Kim, Nam-Hyeong;Woo, Su-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.275-276
    • /
    • 2013
  • This analysis method is based on the wave pressure function with the continuity in the analytical region including fluid and porous structures. Wave profiles coming with oblique angle to permeable submerged breakwater on the porous seabed are computed numerically by using boundary element method. When compared with the existing results for the oblique incident wave, the results of this study show good agreement. The results indicate that wave profiles own high dependability regarding the change of oblique incident waves and permeable submerged breakwater on the porous seabed. Therefore, the analysis method of this study are estimated to be applied as an accurate numerical analysis referring to oblique incident waves and permeable submerged breakwater on the porous seabed in real sea environment.

  • PDF

Numerical Analysis on Settlement Behavior of Seabed Sand-Coastal Structure Subjected to Wave Loads (파압에 의한 해안구조물-해저지반의 침하거동에 대한 수치해석)

  • Kang, Gi-Chun;Yun, Seong-Kyu;Kim, Tae-Hyung;Kim, Dosam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • Seabed settlement underneath a coastal structure may occur due to wave loading generated by storm surge. If the foundation seabed consists of sandy soil, the possibility of the seabed settlement may be more susceptible because of generation of residual excess pore-water pressure and cyclic mobility. However, most coastal structures, such as breakwater, quay wall, etc., are designed by considering wave load assumed to be static condition as an uniform load and the wave load only acts on the structure. In real conditions, however, the wave load is dynamically applied to seabed as well as the coastal structure. In this study, therefore, a real-time wave load is considered and which is assumed acting on both the structure and seabed. Based on a numerical analysis, it was found that there exists a significant effect of wave load on the structure and seabed. The deformation behavior of the seabed according to time was simulated, and other related factors such as the variation of effective stress and the change of effective stress path in the seabed were clearly observed.

Analysis of Price Forecasting and Goodness-of-Fit of the Metals Extracted from Deep Seabed Manganese Nodules (심해저 망간단괴에서 추출되는 금속가격 예측 및 적합도 분석)

  • Kwon, Suk-Jae;Jeong, Sun-Young
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.505-514
    • /
    • 2014
  • The development of deep seabed manganese nodules has been carried out with the aim of commercial development in 2023. It is important to forecast the price of the four metals (copper, nickel, cobalt, and manganese) extracted from manganese nodules because price change is a criterion for investment decision. The main purpose of the study is to forecast the price of four metals using the ARIMA model and VAR model, and calculate the MAPE to compare a goodness-of-fit between the two models. The estimated results of the two models reveal statistical significance and are in keeping with economic theory. The results of MAPE for goodness-of-fit show that the VAR model is between 0.1 and 0.2, and the ARIMA model is between 0.4 and 0.6. That is, the VAR model is better than the ARIMA model in forecasting changes in the price of metals.

Assessment of the Impact of Climate Change on Marine Ecosystem in the South Sea of Korea II (기후변화가 남해(북부 동중국해 포함) 해양생태계에 미치는 영향 평가 시범 연구 II)

  • Ju, Se-Jong;Kim, Se-Joo
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.123-125
    • /
    • 2013
  • According to the Intergovernmental Panel on Climate Change (IPCC), ocean warming and acidification are accelerating as a result of the continuous increase in atmospheric $CO_2$. This may affect the function and structure of marine ecosystems. Recently, changes in marine environments/ecosystems have been observed (increase in SST, decrease in the pH of seawater, northward expansion of subtropical species, etc.) in Korean waters. However, we still don't understand well how climate change affects these changes and what can be expected in the future. In order to answer these questions with regard to Korean waters, the project named 'Assessment of the impact of climate change on marine ecosystems in the South Sea of Korea' has been supported for 5 years by the Ministry of Oceans and Fisheries and is scheduled to end in 2013. This project should provide valuable information on the current status of marine environments/ecosystems in the South Sea of Korea and help establish the methodology and observation/prediction systems to better understand and predict the impact of climate/marine environment changes on the structure and function of marine ecosystems. This special issue contains 5 research and a review articles that highlight the studies carried out during 2012-2013 through this project.

Numerical Analysis on Liquefaction Countermeasure of Seabed under Submerged Breakwater using Concrete Mat Cover (for Regular Waves) (콘크리트매트 피복을 이용한 잠제하 해저지반에서의 액상화 대책공법에 관한 수치해석(규칙파 조건))

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.361-374
    • /
    • 2016
  • When the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure is generated significantly due to pore volume change associated with rearrangement soil grains. This effect leads a seabed liquefaction around and under structures as a result from decrease in the effective stress, and the possibility of structure failure is increased eventually. These facts shown above have been investigated in the previous studies related to regular and irregular waves. This study suggested a concrete mat for preventing the seabed liquefaction near the submerged breakwater. The concrete mat was mainly used as a countermeasure for scouring protection in riverbed. According to installation of the concrete mattress, the time and spatial series of the deformation of submerged breakwater, the pore water pressure, and the pore water pressure ratio in the seabed were investigated. Their results were also compared with those of the seabed unprotected with the concrete mat. The results presented were confirmed that the liquefaction potential of seabed under the concrete mattress is significantly reduced under regular wave field.

Numerical Simulation of Local Scour in Front of Impermeable Submerged Breakwater Using 2-D Coupled Hydro-morphodynamic Model (2차원 연성모델을 적용한 불투과성 잠제 전면의 국부세굴 모의)

  • Lee, Woo-Dong;Lee, Jae-Cheol;Jin, Dong-Hwan;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.484-497
    • /
    • 2016
  • In order to understand the characteristics of the topography change in front of an impermeable breakwater, a coupled model for a two-way analysis of the existing LES-WASS-2D and newly developed morphodynamic model was suggested. A comparison to existing experimental results revealed that the results computed using the 2-D hydro-morphodynamic model were in good agreement with the experimental results for the wave form, pore water pressure in the seabed, and topographical change in front of a submerged breakwater. It was shown that the two-way model suggested in this study is applicable to a morphological change in the seabed around a submerged breakwater. Then, using the numerical results, the topographical changes in front of an impermeable submerged breakwater were examined in relation to partial standing waves. Moreover, the characteristics of the local scour depths in front of them are also discussed in relation to incident wave conditions, sediment qualities, and submerged breakwater shapes.