References
- Siegel RL, Miller KD, Jemal A. 2017. Cancer Statistics, 2017. CA Cancer J. Clin. 67: 7-30. https://doi.org/10.3322/caac.21387
- Ghebeh H, Al-Khaldi S, Olabi S, Al-Dhfyan A, Al-Mohanna F, Barnawi R, et al. 2014. Fascin is involved in the chemotherapeutic resistance of breast cancer cells predominantly via the PI3K/Akt pathway. Br. J. Cancer 111: 1552-1561. https://doi.org/10.1038/bjc.2014.453
- Siegel R, Naishadham D, Jemal A. 2013. Cancer statistics, 2013. CA Cancer J. Clin. 63: 11-30. https://doi.org/10.3322/caac.21166
- Gao S, Li X, Ding X, Qi W, Yang Q. 2017. Cepharanthine induces autophagy, apoptosis and cell cycle arrest in breast cancer cells. Cell. Physiol. Biochem. 41: 1633-1648. https://doi.org/10.1159/000471234
- DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. 2014. Cancer treatment and survivorship statistics, 2014. CA Cancer J. Clin. 64: 252-271. https://doi.org/10.3322/caac.21235
- Clevers H, Nusse R. 2012. Wnt/beta-catenin signaling and disease. Cell 149: 1192-1205. https://doi.org/10.1016/j.cell.2012.05.012
- Holland JD, Gyorffy B, Vogel R, Eckert K, Valenti G, Fang L, et al. 2013. Combined Wnt/beta-catenin, Met, and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome. Cell Rep. 5: 1214-1227. https://doi.org/10.1016/j.celrep.2013.11.001
- Incassati A, Chandramouli A, Eelkema R, Cowin P. 2010. Key signaling nodes in mammary gland development and cancer: beta-catenin. Breast Cancer Res. 12: 213. https://doi.org/10.1186/bcr2723
- Lu W, Lin C, Roberts MJ, Waud WR, Piazza GA, Li Y. 2011. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/beta-catenin pathway. PLoS One 6: e29290. https://doi.org/10.1371/journal.pone.0029290
- Bao R, Christova T, Song S, Angers S, Yan X, Attisano L. 2012. Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells. PLoS One 7: e48670. https://doi.org/10.1371/journal.pone.0048670
- Xu J, Prosperi JR, Choudhury N, Olopade OI, Goss KH. 2015. beta-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells. PLoS One 10: e0117097. https://doi.org/10.1371/journal.pone.0117097
- Barker N, Clevers H. 2006. Mining the Wnt pathway for cancer therapeutics. Nat. Rev. Drug Discov. 5: 997-1014. https://doi.org/10.1038/nrd2154
- Rey JP, Ellies DL. 2010. Wnt modulators in the biotech pipeline. Dev. Dyn. 239: 102-114. https://doi.org/10.1002/dvdy.22181
- Lee C, Park S, Ayush I, Cho K, Kim SS, Kang I, et al. 2018. Effects of Myxococcus fulvus KYC4048 metabolites on breast cancer cell death. J. Microbiol. Biotechnol. 28: 765-775. https://doi.org/10.4014/jmb.1711.11003
- Weissman KJ, Muller R. 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27: 1276-1295. https://doi.org/10.1039/c001260m
- Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, et al. 1995. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55: 2325-2333.
- Gerth K, Bedorf N, Hofle G, Irschik H, Reichenbach H. 1996. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. J. Antibiot. (Tokyo) 49: 560-563. https://doi.org/10.7164/antibiotics.49.560
- Fumoleau P, Coudert B, Isambert N, Ferrant E. 2007. Novel tubulin-targeting agents: anticancer activity and pharmacologic profile of epothilones and related analogues. Ann. Oncol. 18 Suppl 5: v9-15. https://doi.org/10.1093/annonc/mdm173
- Gerth K, Pradella S, Perlova O, Beyer S, Muller R. 2003. Myxobacteria: proficient producers of novel natural products with various biological activities--past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106: 233-253. https://doi.org/10.1016/j.jbiotec.2003.07.015
- Weissman KJ, Muller R. 2009. A brief tour of myxobacterial secondary metabolism. Bioorg. Med. Chem. 17: 2121-2136. https://doi.org/10.1016/j.bmc.2008.11.025
- van Schie EH, van Amerongen R. 2020. Aberrant WNT/CTNNB1 Signaling as a therapeutic target in human breast cancer: Weighing the evidence. Front. Cell Dev. Biol. 8: 25. https://doi.org/10.3389/fcell.2020.00025
- Wang Z, Li B, Zhou L, Yu S, Su Z, Song J, et al. 2016. Prodigiosin inhibits Wnt/beta-catenin signaling and exerts anticancer activity in breast cancer cells. Proc. Natl. Acad. Sci. USA 113: 13150-13155. https://doi.org/10.1073/pnas.1616336113
- Boonmuen N, Thongon N, Chairoungdua A, Suksen K, Pompimon W, Tuchinda P, et al. 2016. 5-Acetyl goniothalamin suppresses proliferation of breast cancer cells via Wnt/beta-catenin signaling. Eur. J. Pharmacol. 791: 455-464. https://doi.org/10.1016/j.ejphar.2016.09.024
- Li X, Meng Y, Xie C, Zhu J, Wang X, Li Y, et al. 2018. Diallyl Trisulfide inhibits breast cancer stem cells via suppression of Wnt/beta-catenin pathway. J. Cell Biochem. 119: 4134-4141. https://doi.org/10.1002/jcb.26613
- MacDonald BT, Tamai K, He X. 2009. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17: 9-26. https://doi.org/10.1016/j.devcel.2009.06.016
- Kim HJ, Seo BG, Kim KD, Yoo J, Lee JH, Min BS, et al. 2020. C5, A Cassaine diterpenoid amine, induces apoptosis via the extrinsic pathways in human lung cancer cells and human lymphoma cells. Int. J. Mol. Sci. 21: 1298. https://doi.org/10.3390/ijms21041298