DOI QR코드

DOI QR Code

Identification and Characterization of a Novel Thermostable GDSL-Type Lipase from Geobacillus thermocatenulatus

  • Jo, Eunhye (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Kim, Jihye (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Lee, Areum (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Moon, Keumok (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Cha, Jaeho (Department of Microbiology, College of Natural Sciences, Pusan National University)
  • Received : 2020.12.18
  • Accepted : 2021.02.10
  • Published : 2021.03.28

Abstract

Two putative genes, lip29 and est29, encoding lipolytic enzymes from the thermophilic bacterium Geobacillus thermocatenulatus KCTC 3921 were cloned and overexpressed in Escherichia coli. The recombinant Lip29 and Est29 were purified 67.3-fold to homogeneity with specific activity of 2.27 U/mg and recovery of 5.8% and 14.4-fold with specific activity of 0.92 U/mg and recovery of 1.3%, respectively. The molecular mass of each purified enzyme was estimated to be 29 kDa by SDS-PAGE. The alignment analysis of amino acid sequences revealed that both enzymes belonged to GDSL lipase/esterase family including conserved blocks with SGNH catalytic residues which was mainly identified in plants before. While Est29 showed high specificity toward short-chain fatty acids (C4-C8), Lip29 showed strong lipolytic activity to long-chain fatty acids (C12-C16). The optimal activity of Lip29 toward p-nitrophenyl palmitate as a substrate was observed at 50℃ and pH 9.5, respectively, and its activity was maintained more than 24 h at optimal temperatures, indicating that Lip29 was thermostable. Lip29 exhibited high tolerance against detergents and metal ions. The homology modeling and substrate docking revealed that the long-chain substrates showed the greatest binding affinity toward enzyme. Based on the biochemical and insilico analyses, we present for the first time a GDSL-type lipase in the thermophilic bacteria group.

Keywords

References

  1. Chahinian H, Sarda L. 2009. Distinction between esterases and lipases: Comparative biochemical properties of sequence-related carboxylesterases. Protein Pept. Lett. 16: 1149-1161. https://doi.org/10.2174/092986609789071333
  2. Arpigny JL, Jaeger KE. 1999. Bacterial lipolytic enzymes: classification and properties. Biochem. J. 343: 177-183. https://doi.org/10.1042/bj3430177
  3. Bornscheuer UT. 2002. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 26: 73-81. https://doi.org/10.1016/S0168-6445(01)00075-4
  4. Kovacic F, Babic N, Krauss U, Jaeger K-E. 2018. Classification of lipolytic enzymes from bacteria, pp. 1-35. In Rojo F (ed.), Aerobic Utilization of Hydrocarbons, Oils and Lipids, Ed. Springer International Publishing, Cham
  5. Upton C, Buckley JT. 1995. A new family of lipolytic enzymes? Trends Biochem. Sci. 20: 178-179. https://doi.org/10.1016/S0968-0004(00)89002-7
  6. Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF. 2004. GDSL family of serine esterases/lipases. Prog. Lipid. Res. 43: 534-552. https://doi.org/10.1016/j.plipres.2004.09.002
  7. Reina JJ, Guerrero C, Heredia A. 2007. Isolation, characterization, and localization of AgaSGNH cDNA: a new SGNH-motif plant hydrolase specific to Agave americana L. leaf epidermis. J. Exp. Bot. 58: 2717-2731. https://doi.org/10.1093/jxb/erm136
  8. Wicka M, Wanarska M, Krajewska E, Pawlak-Szukalska A, Kur J, Cieslinski H. 2016. Cloning, expression, and biochemical characterization of a cold-active GDSL-esterase of a Pseudomonas sp. S9 isolated from Spitsbergen island soil. Acta Biochim. Pol. 63: 117-125.
  9. Yang Z, Zhang Y, Shen T, Xie Y, Mao Y, Ji C. 2013. Cloning, expression and biochemical characterization of a novel, moderately thermostable GDSL family esterase from Geobacillus thermodenitrificans T2. J. Biosci. Bioeng. 115: 133-137. https://doi.org/10.1016/j.jbiosc.2012.08.016
  10. Shakiba MH, Ali MS, Rahman RN, Salleh AB, Leow TC. 2016. Cloning, expression and characterization of a novel coldadapted GDSL family esterase from Photobacterium sp. strain J15. Extremophiles 20: 44-55.
  11. Yang DHX, Li S, Liu J, Stabenow J, Zalduondo L, White S, Kong Y. 2019. Rv1075c of Mycobacterium tuberculosis is a GDSL-like esterase and is important for intracellular survival. J. Infect. Dis. 200: 677-686.
  12. Kaur J, Kaur J. 2019. Rv0518, a nutritive stress inducible GDSL lipase of Mycobacterium tuberculosis, enhanced intracellular survival of bacteria by cell wall modulation. Int. J. Biol. Macromol. 135: 180-195. https://doi.org/10.1016/j.ijbiomac.2019.05.121
  13. Kovacic F, Granzin J, Wilhelm S, Kojic-Prodic B, Batra-Safferling R, Jaeger KE. 2013. Structural and functional characterisation of TesA - a novel lysophospholipase A from Pseudomonas aeruginosa. PLoS One 8: e69125. https://doi.org/10.1371/journal.pone.0069125
  14. McMullan G, Christie JM, Rahman TJ, Banat IM, Ternan NG, Marchant R. 2004. Habitat, applications and genomics of the aerobic, thermophilic genus Geobacillus. Biochem. Soc. Trans. 32: 214-217. https://doi.org/10.1042/bst0320214
  15. Counago R, Shamoo Y. 2005. Gene replacement of adenylate kinase in the gram-positive thermophile Geobacillus stearothermophilus disrupts adenine nucleotide homeostasis and reduces cell viability. Extremophiles 9: 135-144. https://doi.org/10.1007/s00792-004-0428-x
  16. Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, et al. 2009. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab. Eng. 11: 398-408. https://doi.org/10.1016/j.ymben.2009.08.005
  17. Tabachnikov O, Shoham Y. 2013. Functional characterization of the galactan utilization system of Geobacillus stearothermophilus. FEBS J. 280: 950-964. https://doi.org/10.1111/febs.12089
  18. Rua ML, Atomi H, Schmidt-Dannert C, Schmid RD. 1998. High-level expression of the thermoalkalophilic lipase from Bacillus thermocatenulatus in Escherichia coli. Appl. Microbiol. Biotechnol. 49: 405-410. https://doi.org/10.1007/s002530051190
  19. Quyen DT, Schmidt-Dannert C, Schmid RD. 2003. High-level expression of a lipase from Bacillus thermocatenulatus BTL2 in Pichia pastoris and some properties of the recombinant lipase. Protein Exp. Purif. 28: 102-110. https://doi.org/10.1016/S1046-5928(02)00679-4
  20. Ewis HE, Abdelal AT, Lu CD. 2004. Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus. Gene 329: 187-195. https://doi.org/10.1016/j.gene.2003.12.029
  21. Alalouf O, Balazs Y, Volkinshtein M, Grimpel Y, Shoham G, Shoham Y. 2011. A new family of carbohydrate esterases is represented by a GDSL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus. J. Biol. Chem. 286: 41993-42001. https://doi.org/10.1074/jbc.M111.301051
  22. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  23. Beisson F, Tiss A, Riviere C, Verger R. 2000. Methods for lipase detection and assay: a critical review. Eur. J. Lipid Sci. Tech. 102: 133-153. https://doi.org/10.1002/(SICI)1438-9312(200002)102:2<133::AID-EJLT133>3.0.CO;2-X
  24. Tang L, Xia Y, Wu X, Chen X, Zhang X, Li H. 2017. Screening and characterization of a novel thermostable lipase with detergent-additive potential from the metagenomic library of a mangrove soil. Gene 625: 64-71. https://doi.org/10.1016/j.gene.2017.04.046
  25. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10: 845-858. https://doi.org/10.1038/nprot.2015.053
  26. Dallakyan S, Olson AJ. 2015. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 1263: 243-250. https://doi.org/10.1007/978-1-4939-2269-7_19
  27. Wissuwa J, Stokke R, Fedoy A-E, Lian K, Smalas AO, Steen IH. 2016. Isolation and complete genome sequence of the thermophilic Geobacillus sp. 12AMOR1 from an Arctic deep-sea hydrothermal vent site. Stand. Genomic Sci. 11: 16. https://doi.org/10.1186/s40793-016-0137-y
  28. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, et al. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51: 433-446. https://doi.org/10.1099/00207713-51-2-433
  29. Choi WC, Kim MH, Ro HS, Ryu SR, Oh TK, Lee JK. 2005. Zinc in lipase L1 from Geobacillus stearothermophilus L1 and structural implications on thermal stability. FEBS Lett. 579: 3461-3466. https://doi.org/10.1016/j.febslet.2005.05.016
  30. Leow TC, Rahman RN, Basri M, Salleh AB. 2007. A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles 11: 527-535. https://doi.org/10.1007/s00792-007-0069-y
  31. Tayyab M, Rashid N, Akhtar M. 2011. Isolation and identification of lipase producing thermophilic Geobacillus sp SBS-4S: cloning and characterization of the lipase. J. Biosci.Bioeng. 111: 272-278. https://doi.org/10.1016/j.jbiosc.2010.11.015
  32. Zhu YB, Li HB, Ni H, Xiao AF, Li LJ, Cai HN. 2015. Molecular cloning and characterization of a thermostable lipase from deep-sea thermophile Geobacillus sp. EPT9. World J. Microbiol. Biotechnol. 31: 295-306. https://doi.org/10.1007/s11274-014-1775-0
  33. Ling H, Zhao J, Zuo K, Qiu C, Yao H, Qin J, et al. 2006. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L. J. Biochem. Mol. Biol. 39: 297-303.
  34. Naranjo MA, Forment J, Roldan M, Serrano R, Vicente O. 2006. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant Cell Environ. 29: 1890-1900. https://doi.org/10.1111/j.1365-3040.2006.01565.x
  35. Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, Choi DS, et al. 2008. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227: 539-558. https://doi.org/10.1007/s00425-007-0637-5
  36. Yang Z, Zhang Y, Qiu R, Huang J, Ji C. 2013. Crystallization and preliminary X-ray diffraction analysis of a thermostable GDSL-family esterase, EstL5, from Geobacillus thermodenitrificans T2. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69: 776-778. https://doi.org/10.1107/S174430911301498X
  37. Yu T, Ding J, Zheng Q, Han N, Yu J, Yang Y, et al. 2016. Identification and characterization of a new alkaline SGNH hydrolase from a thermophilic bacterium Bacillus sp. K91. J. Microbiol. Biotechnol. 26: 730-738. https://doi.org/10.4014/jmb.1507.07101
  38. Rahman RN, Baharum SN, Basri M, Salleh AB. 2005. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal. Biochem. 341: 267-274. https://doi.org/10.1016/j.ab.2005.03.006
  39. Kambourova M, Kirilova N, Mandeva R, Derekova A. 2003. Purification and properties of thermostable lipase from a thermophilic Bacillus stearothermophilus MC 7. J. Mol. Catal. B Enzym. 22: 307-313. https://doi.org/10.1016/S1381-1177(03)00045-6
  40. Ding J, Yu T, Liang L, Xie Z, Yang Y, Zhou J, et al. 2014. Biochemical characterization of a GDSL-motif esterase from Bacillus sp. K91 with a new putative catalytic mechanism. J. Microbiol. Biotechnol. 24: 1551-1558. https://doi.org/10.4014/jmb.1406.06056
  41. Yu S, Zheng B, Zhao X, Feng Y. 2010. Gene cloning and characterization of a novel thermophilic esterase from Fervidobacterium nodosum Rt17-B1. Acta Biochim. Biophys. Sin. (Shanghai) 42: 288-295. https://doi.org/10.1093/abbs/gmq020
  42. Talker-Huiber D, Jose J, Glieder A, Pressnig M, Stubenrauch G, Schwab H. 2003. Esterase EstE from Xanthomonas vesicatoria (Xv_EstE) is an outer membrane protein capable of hydrolyzing long-chain polar esters. Appl. Microbiol. Biotechnol. 61: 479-487. https://doi.org/10.1007/s00253-003-1227-5