DOI QR코드

DOI QR Code

Removal of Salmonella Typhimurium Biofilm from Food Contact Surfaces Using Quercus infectoria Gall Extract in Combination with a Surfactant

  • Damrongsaktrakul, Peetitas (Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT)) ;
  • Ruengvisesh, Songsirin (Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT)) ;
  • Rahothan, Arewan (Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT)) ;
  • Sukhumrat, Nuttamon (Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT)) ;
  • Tuitemwong, Pravate (Food Safety Center, Institute for Scientific and Technological Research and Services (ISTRS), KMUTT) ;
  • Phung-on, Isaratat (Maintenance Technology Center, ISTRS, KMUTT)
  • Received : 2021.01.13
  • Accepted : 2021.01.31
  • Published : 2021.03.28

Abstract

Quercus infectoria (nutgall) has been reported to possess antimicrobial activities against a wide range of pathogens. Nevertheless, the biofilm removal effect of nutgall extract has not been widely investigated. In this study, we therefore evaluated the effect of nutgall extract in combination with cetrimonium bromide (CTAB) against preformed biofilm of Salmonella Typhimurium on polypropylene (PP) and stainless steel (SS) coupons in comparison with other sanitizers. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of nutgall extract and surfactants (CTAB and sodium dodecyl sulfate; SDS) were assessed. CTAB showed a more efficient antimicrobial activity than SDS and was selected to use in combination with nutgall extract for removing biofilm. To determine the biofilm removal efficacy, the PP and SS coupons were individually submerged in 2x MBC of nutgall extract (256 mg/ml) + 2x MBC of CTAB (2.5 mg/ml), nutgall extract alone (256 mg/ml), CTAB alone (2.5 mg/ml), distilled water, and 100 ppm sodium hypochlorite for 5, 15, and 30 min. The remaining sessile cells in biofilm were determined. Overall, the greatest biofilm removal efficacy was observed with nutgall extract + CTAB; the biofilm removal efficacy of sanitizers tended to increase with the exposure time. The SEM analysis demonstrated that S. Typhimurium biofilm on PP and SS coupons after exposure to nutgall extract + CTAB for 30 min displayed morphological alterations with wrinkles. This study suggests nutgall extract + CTAB may be an alternative to commonly used sanitizers to remove biofilm from food contact surfaces in the food industry and household.

Keywords

References

  1. World Health Organization (WHO). 2015. WHO estimates of the global burden of foodborne diseases. Available from https://apps.who.int/iris/bitstream/handle/10665/199350/9789241565165_eng.pdf?sequence=1. Accessed Oct. 8, 2020.
  2. World Health Organization (WHO). 2018. Salmonella (non-typhoidal). Available from https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal). Accessed July 21, 2020.
  3. Center for Disease Control and Prevention (CDC). 2020. Salmonella. Available from https://www.cdc.gov/salmonella/. Accessed July 21, 2020
  4. European Food Safety Authority (EFSA). 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 16: e05500-e05500.
  5. Department of Disease Control (DDC). 2019. Food Poisoning. Available from https://www.boe.moph.go.th/boedb/surdata/506wk/y62/d03_5262.pdf. Accessed. July 21, 2020
  6. Scanlan CM. 2004. Genus Salmonella, pp. 116-119. Bacterial diseases of domestic animals. 2nd Ed. Brown Paw Educational Media, College Station, Texas. USA.
  7. Chmielewski RAN, Frank JF. 2003. Biofilm formation and control in food processing facilities. Compr. Rev. Food Sci. Food Saf. 2: 22-32. https://doi.org/10.1111/j.1541-4337.2003.tb00012.x
  8. Jun W, Kim MS, Cho BK, Millner PD, Chao KL, Chan DE. 2010. Microbial biofilm detection on food contact surfaces by macro-scale fluorescence imaging. J. Food Eng. 99: 314-322. https://doi.org/10.1016/j.jfoodeng.2010.03.005
  9. Srey S, Jahid IK, Ha S-D. 2013. Biofilm formation in food industries: A food safety concern. Food Control 31: 572-585. https://doi.org/10.1016/j.foodcont.2012.12.001
  10. LeChevallier MW, Cawthon CD, Lee RG. 1988. Inactivation of biofilm bacteria. Appl. Environ. Microbiol. 54: 2492-2499. https://doi.org/10.1128/AEM.54.10.2492-2499.1988
  11. Kumar CG, Anand SK. 1998. Significance of microbial biofilms in food industry: a review. Int. J. Food Microbiol. 42: 9-27. https://doi.org/10.1016/S0168-1605(98)00060-9
  12. Simoes M, Simoes LC, Vieira MJ. 2010. A review of current and emergent biofilm control strategies. LWT-Food Sci. Technol. 43: 573-583. https://doi.org/10.1016/j.lwt.2009.12.008
  13. Van Houdt R, Michiels CW. 2010. Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 109: 1117-1131. https://doi.org/10.1111/j.1365-2672.2010.04756.x
  14. Corcoran M, Morris D, De Lappe N, O'Connor J, Lalor P, Dockery P, et al. 2014. Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Appl. Environ. Microbiol. 80: 1507-1514. https://doi.org/10.1128/AEM.03109-13
  15. Cogan TA, Bloomfield SF, Humphrey TJ. 1999. The effectiveness of hygiene procedures for prevention of cross-contamination from chicken carcasses in the domestic kitchen. Lett. Appl. Microbiol. 29: 354-358. https://doi.org/10.1046/j.1472-765X.1999.00656.x
  16. Schlegelova J, Babak V, Holasova M, Konstantinova L, Necidova L, Sisak F, et al. 2010. Microbial contamination after sanitation of food contact surfaces in dairy and meat processing plants. Czech J. Food Sci. 28: 450-461. https://doi.org/10.17221/65/2009-cjfs
  17. Djordjevic D, Wiedmann M, McLandsborough LA. 2002. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol. 68: 2950-2958. https://doi.org/10.1128/AEM.68.6.2950-2958.2002
  18. Hapidin H, Rozelan D, Abdullah H, Wan Hanaffi WN, Soelaiman IN. 2015. Quercus infectoria gall extract enhanced the proliferation and activity of human fetal osteoblast cell line (hFOB 1.19). Malays. J. Med. Sci. 22: 12-22.
  19. Baharuddin NS, Abdullah H, Abdul Wahab WNAW. 2015. Anti-Candida activity of Quercus infectoria gall extracts against Candida species. J. Pharm. Bioallied Sci. 7: 15-20. https://doi.org/10.4103/0975-7406.148742
  20. Voravuthikunchai S, Chusri S, Suwalak S. 2008. Quercus infectoria. Oliv. Pharm. Biol. 46: 367-372. https://doi.org/10.1080/13880200802055784
  21. Satirapathkul C, Leela T. 2011. Growth inhibition of pathogenic bacteria by extract of Quercus Infectoria galls. Int. J. Biosci. Biochem. Bioinformatics 1: 26-31. https://doi.org/10.7763/ijbbb.2011.v1.5
  22. Chusri S, Voravuthikunchai SP. 2009. Detailed studies on Quercus infectoria Olivier (nutgalls) as an alternative treatment for methicillin-resistant Staphylococcus aureus infections. J. Appl. Microbiol. 106: 89-96. https://doi.org/10.1111/j.1365-2672.2008.03979.x
  23. Chusri S, Voravuthikunchai SP. 2011. Damage of staphylococcal cytoplasmic membrane by Quercus infectoria G. Olivier and its components. Lett. Appl. Microbiol. 52: 565-572. https://doi.org/10.1111/j.1472-765X.2011.03041.x
  24. Mohammadi-Sichani M, Karbasizadeh V, Dokhaharani SC. 2016. Evaluation of biofilm removal activity of Quercus infectoria galls against Streptococcus mutans. Dent. Res. J. 13: 46-51. https://doi.org/10.4103/1735-3327.174708
  25. Voravuthikunchai S, Limsuwan S, Mitchell H. 2006. Effects of Punica granatum pericarps and Quercus infectoria nutgalls on cell surface hydrophobicity and cell survival of Helicobacter pylori. J. Health Sci. 52: 154-159. https://doi.org/10.1248/jhs.52.154
  26. Voravuthikunchai S, Suwalak S. 2009. Changes in cell surface properties of shiga toxigenic Escherichia coli by Quercus infectoria G. Olivier. J. Food Prot. 72: 1699-1704. https://doi.org/10.4315/0362-028X-72.8.1699
  27. Chusri S, Phatthalung PN, Voravuthikunchai SP. 2012. Anti-biofilm activity of Quercus infectoria G. Olivier against methicillin-resistant Staphylococcus aureus. Lett. Appl. Microbiol. 54: 511-517. https://doi.org/10.1111/j.1472-765X.2012.03236.x
  28. Wan Nor Amilah WA, Masrah M, Hasmah A, Noor Izani NJ. 2014. In vitro antibacterial activity of Quercus infectoria gall extracts against multidrug resistant bacteria. Trop. Biomed. 31: 680-688.
  29. Falco I, Verdeguer M, Aznar R, Sanchez G, Randazzo W. 2018. Sanitizing food contact surfaces by the use of essential oils. Innov. Food Sci. Emerg. 51: 220-228.
  30. Halden RU. 2014. On the need and speed of regulating triclosan and triclocarban in the United States. Environ. Sci. Technol. 48: 3603-3611. https://doi.org/10.1021/es500495p
  31. Xue R, Shi H, Ma Y, Yang J, Hua B, Inniss EC, et al. 2017. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection. Chemosphere 189: 349-356. https://doi.org/10.1016/j.chemosphere.2017.09.059
  32. Soni KA, Oladunjoye A, Nannapaneni R, Schilling MW, Silva JL, Mikel B, et al. 2013. Inhibition and inactivation of Salmonella Typhimurium biofilms from polystyrene and stainless steel surfaces by essential oils and phenolic constituent carvacrol. J. Food Prot. 76: 205-212. https://doi.org/10.4315/0362-028X.JFP-12-196
  33. Dewanto V, Wu X, Adom KK, Liu RH. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50: 3010-3014. https://doi.org/10.1021/jf0115589
  34. Bazargani MM, Rohloff J. 2016. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 61: 156-164. https://doi.org/10.1016/j.foodcont.2015.09.036
  35. Ruengvisesh S, Loquercio A, Castell-Perez E, Taylor TM. 2015. Inhibition of bacterial pathogens in medium and on spinach leaf surfaces using plant-derived antimicrobials loaded in surfactant micelles. J. Food Sci. 80: M2522-2529. https://doi.org/10.1111/1750-3841.13085
  36. Nanasombat S, Kuncharoen N, Ritcharoon B, Sukcharoen P. 2018. Antibacterial activity of thai medicinal plant extracts against oral and gastrointestinal pathogenic bacteria and prebiotic effect on the growth of lactobacillus acidophilus. Chiang Mai J. Sci. 45: 33-44.
  37. Haque ASA, Ahmad W, Khan RM, Hasan A. 2016. Ethnopharmacology of Quercus infectoria galls: a review. Hippocratic J. Unani Med. 11: 105-118.
  38. Nakata K, Tsuchido T, Matsumura Y. 2011. Antimicrobial cationic surfactant, cetyltrimethylammonium bromide, induces superoxide stress in Escherichia coli cells. J. Appl. Microbiol. 110: 568-579. https://doi.org/10.1111/j.1365-2672.2010.04912.x
  39. Bhattarai A, Niraula T, Chatterjee S. 2014. Sodium dodecyl sulphate: A very useful surfactant for scientific investigations. J. Knowledge Innov. 2: 111-113.
  40. Simoes M, Pereira MO, Vieira MJ. 2005. Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes. Water Res. 39: 478-486. https://doi.org/10.1016/j.watres.2004.09.018
  41. Vidacs A, Kerekes E, Rajko R, Petkovits T, Alharbi NS, Khaled JM, et al. 2018. Optimization of essential oil-based natural disinfectants against Listeria monocytogenes and Escherichia coli biofilms formed on polypropylene surfaces. J. Mol. Liq. 255: 257-262. https://doi.org/10.1016/j.molliq.2018.01.179
  42. de Souza EL, Meira QGS, de Medeiros Barbosa I, Athayde AJAA, da Conceicao ML, de Siqueira Junior JP. 2014. Biofilm formation by Staphylococcus aureus from food contact surfaces in a meat-based broth and sensitivity to sanitizers. Braz. J. Microbiol. 45: 67-75. https://doi.org/10.1590/S1517-83822014000100010
  43. da Silva Meira QG, de Medeiros Barbosa I, Alves Aguiar Athayde AJ, de Siqueira-Junior JP, de Souza EL. 2012. Influence of temperature and surface kind on biofilm formation by Staphylococcus aureus from food-contact surfaces and sensitivity to sanitizers. Food Control 25: 469-475. https://doi.org/10.1016/j.foodcont.2011.11.030
  44. Wang H, Wang H, Xing T, Wu N, Xu X, Zhou G. 2016. Removal of Salmonella biofilm formed under meat processing environment by surfactant in combination with bio-enzyme. LWT - Food Sci. Technol. 66: 298-304. https://doi.org/10.1016/j.lwt.2015.10.049
  45. Amaral VCS, Santos PR, da Silva AF, dos Santos AR, Machinski Jr M, Mikcha JMG. 2015. Effect of carvacrol and thymol on Salmonella spp. biofilms on polypropylene. Int. J. Food Sci. Technol. 50: 2639-2643. https://doi.org/10.1111/ijfs.12934
  46. Guo J, Gao Z, Li G, Fu F, Liang Z, Zhu H, et al. 2019. Antimicrobial and antibiofilm efficacy and mechanism of essential oil from Citrus Changshan-huyou Y. B. chang against Listeria monocytogenes. Food Control 105: 256-264. https://doi.org/10.1016/j.foodcont.2019.06.014
  47. Rodrigues JBD, de Souza NT, Scarano JOA, de Sousa JM, Lira MC, de Figueiredo R, et al. 2018. Efficacy of using oregano essential oil and carvacrol to remove young and mature Staphylococcus aureus biofilms on food-contact surfaces of stainless steel. Lwt-Food Sci. Technol. 93: 293-299. https://doi.org/10.1016/j.lwt.2018.03.052