DOI QR코드

DOI QR Code

Optimization of cultivation conditions for pullulan production from Aureobasidium pullulans MR by response surface methodology

반응표면분석법을 이용한 Aureobasidium pullulans MR의 풀루란 생산을 위한 배양 조건 최적화

  • Jo, Hye-Mi (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Kim, Ye-Jin (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Yoo, Sang-Ho (Department of Food Science & Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University) ;
  • Kim, Chang-Mu (National Institute of Biological Resources) ;
  • Kim, KyeWon (Academic Industry Cooperation, Hankyong National University) ;
  • Park, Cheon-Seok (Department of Food Science and Biotechnology, Kyung Hee University)
  • 조혜미 (경희대학교 식품생명공학과) ;
  • 김예진 (경희대학교 식품생명공학과) ;
  • 유상호 (세종대학교 식품공학과) ;
  • 김창무 (국립생물자원관 미생물자원과) ;
  • 김계원 (국립한경대학교 산학협력단) ;
  • 박천석 (경희대학교 식품생명공학과)
  • Received : 2020.12.21
  • Accepted : 2021.02.08
  • Published : 2021.04.30

Abstract

Aureobasidium pullulans, a black yeast, produces pullulan, a linear α-glucan composed of maltotriose repeating units linked by α(1→6)-glycosidic linkages. Pullulan can be widely used in food, cosmetic, and biotechnology industries. In this study, we isolated eight strains of A. pullulans from Forsythia koreana, Magnolia kobus DC., Spiraea prunifolia var. simpliciflora, Cornus officinalis, Cerasus, and Hippophae rhamnoides. Among them, A. pullulans MR was selected as the best pullulan producer. The effects of a carbon source, a nitrogen source, and pH on pullulan production were examined. The optimal cultivation conditions for pullulan production by A. pullulans MR were determined by response surface methodology as 15% sucrose, 0.4% soy peptone, and an initial pH of 7 at 26℃. Under these conditions, the predicted pullulan production was 47.6 g/L, which was very close to the experimental data (48.9 g/L).

본 연구에서는 A. pullulans MR의 풀루란 생산에 있어 배양 조건에 따른 변화를 살펴보았다. 먼저 시간과 온도에 따른 건조된 균체량과 풀루란 생산량의 변화를 비교하였으며, 기존의 AYS배 지내 탄소원과 혼합질소원 변화에 따른 풀루란 생산량을 비교하였다. 그 결과 sucrose와 ammonium sulfate, soy peptone을 본 실험의 최적 탄소원과 혼합질소원으로 결정하였으며, 그 후 반응표면분석법을 통해 탄소원인 sucrose와 질소원인 soy pepetone의 최적 농도와 최적 초기 pH를 알 수 있었다. 분산분석 결과를 토대로 비교하였을 때 A. pullulans MR의 풀루란 생산에 있어 세가지 변수 중 특히 초기 pH가 풀루란 생산에 가장 큰 영향을 미친다는 것을 확인하였다. 결과적으로 A. pullulans MR을 26℃에서 5일간 배양할 경우 반응표면분석법을 이용하여 얻은 최적 배양 조건은 sucrose 15%, soy peptone 0.4%, 초기 pH 7이였으며, 위의 배양 조건에서 예측할 수 있는 풀루란의 최대생산량은 47.6 g/L이었다. 이후 확인 실험을 위해 A. pullulans MR을 동일 조건으로 배양한 뒤 풀루란의 생산량을 관찰한 결과 48.9±3.4 g/L로 예측된 값과 근접한 값을 얻을 수 있었다. 추가적으로, sucrose의 경우 기존의 선행연구들에서도 A. pullulans의 풀루란 생산을 위한 탄소원으로 보고가 되었지만, 배지내 sucrose의 함량이 5%를 초과하게 될 경우 오히려 풀루란의 생성을 저해한다는 결과가 보고된 바가 있다(Shin 등, 1987b). 이는 배지내 sucrose의 함량이 높아 질수록 sucrose의 농도에 의한 삼투압 현상과 낮은 수분활성도로 인해 발생하며(Singh 등, 2009b), sucrose뿐만 아니라 glucose와 maltose에서도 같은 결과가 나타내는 것이 보고된 바 있다(Shin 등, 1987a). 하지만 이러한 보고들과 다르게 본 연구에서는 오히려 sucrose의 함량을 5%에서 15%까지 높아졌음에도 불구하고 풀루란의 생산이 오히려 증가하는 반대의 결과가 나타났다. 또한 A. pullulans MR의 풀루란 생산에 있어 가장 큰 영향을 미친 초기 배지의 pH의 경우 A. pullulans 균주에 따라 최적 pH가 pH 3.8부터 pH 7.5까지 다양하게 나타나는 것을 알 수 있었는데(Singh 등, 2018a; Wang 등, 2013; Shin 등, 1991) A. pullulans MR의 경우 비교적 중성인 pH 7에서 가장 많은 양의 풀루란이 생산된 것을 알 수 있었다. 본 실험을 통해 A. pullulans MR의 풀루란 대량생산 가능성을 확인하였고, 이를 활용하여 식품, 화장품, 제약 등 여러 광범위한 분야에서 미생물 유래 다당류인 풀루란의 산업적 활용이 가능할 것이라 생각한다.

Keywords

References

  1. Bauer R. Physiology of Dematium pullulans de Bary. Zentralbl Bacteriol Parasitenkd Infektionskr Hyg. Abt2 98:133-167 (1938)
  2. Catley B. Utilization of carbon sources by Pullularia pullulans for the elaboration of extracellular polysaccharides. Appl. Microbiol. Biotechnol. 22: 641-649 (1971)
  3. Cheng K-C, Demirci A, Catchmark JM. Evaluation of medium composition and fermentation parameters on pullulan production by Aureobasidium pullulans. Food Sci. Technol. Int. 17: 99-109 (2011a) https://doi.org/10.1177/1082013210368719
  4. Cheng K-C, Demirci A, Catchmark JM. Pullulan: biosynthesis, production, and applications. Appl. Microbiol. Biotechnol. 92: 29 (2011b) https://doi.org/10.1007/s00253-011-3477-y
  5. Chi Z, Wang F, Chi Z, Yue L, Liu G, Zhang T. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl. Microbiol. Biotechnol 82: 793-804 (2009) https://doi.org/10.1007/s00253-009-1882-2
  6. Chi Z, Zhao S. Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain. Enzyme Microb. Technol. 33: 206-211 (2003) https://doi.org/10.1016/S0141-0229(03)00119-4
  7. Duan X, Chi Z, Wang L, Wang X. Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr. Polym. 73: 587-593 (2008) https://doi.org/10.1016/j.carbpol.2007.12.028
  8. Dufresne R, Thibault J, Leduy A, Lencki R. The effects of pressure on the growth of Aureobasidium pullulans and the synthesis of pullulan. Appl. Microbiol. Biotechnol. 32: 526-532 (1990) https://doi.org/10.1007/BF00173722
  9. Finkelman M, Vardanis A. Simplified microassay for pullulan synthesis. Appl. Environ. Microbiol. 43: 483-485 (1982) https://doi.org/10.1128/AEM.43.2.483-485.1982
  10. Fraser C, Jennings H. A glucan from Tremella mesenterica NRRL-Y6158. Can. J. Chem. 49: 1804-1807 (1971) https://doi.org/10.1139/v71-297
  11. Gibson LH, Coughlin RW. Optimization of high molecular weight pullulan production by Aureobasidium pullulans in batch fermentations. Biotechnol. Prog.18: 675-678 (2002) https://doi.org/10.1021/bp0200043
  12. Grumezescu AM, Butu A. Microbial Production of Food Ingredients and Additives. vol 5. Academic Press. Cambridge, MA, USA. pp. 355-356 (2017)
  13. Jiang L. Optimization of fermentation conditions for pullulan production by Aureobasidium pullulans using response surface methodology. Carbohydr. Polym. 79: 414-417 (2010) https://doi.org/10.1016/j.carbpol.2009.08.027
  14. Kim JH, Kim MR, Lee JH, Lee JW, Kim SK. Production of high molecular weight pullulan by Aureobasidium pullulans using glucosamine. Biotechnol. Lett. 22: 987-990 (2000) https://doi.org/10.1023/A:1005681019573
  15. Kim DG, Shim JY, Part JT, Lee WH. Design of optimal experimental conditions for scaling-up G7 enzyme using response surface method. Proceeding of the Korean Society for Agricultural Machinery Conference. 21: 133-134 (2016)
  16. Kurtzman CP, Robnett CJ. Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses. FEMS Yeast Res. 3: 417-432 (2003) https://doi.org/10.1016/S1567-1356(03)00012-6
  17. Ma ZC, Fu WJ, Liu GL, Wang ZP, Chi ZM. High-level pullulan production by Aureobasidium pullulans var. melanogenium P16 isolated from mangrove system. Appl. Microbiol. Biotechnol. 98: 4865-4873 (2014) https://doi.org/10.1007/s00253-014-5554-5
  18. McNeil B, Kristiansen B. Temperature effects on polysaccharide formation by Aureobasidium pullulans in stirred tanks. Enzyme Microb. Technol 12: 521-526 (1990) https://doi.org/10.1016/0141-0229(90)90069-3
  19. Mounir R, Durieux A, Bodo E, Allard C, Simon J.-P, Achbani E.-H, Jaafari S. EI, Douira A, Jijakli M-H. Production, formulation and antagonistic activity of the biocontrol like-yeast Aureobasidium pullulans against Penicillium expansum. Biotechnol. Lett. 29: 553-559 (2007) https://doi.org/10.1007/s10529-006-9269-2
  20. Na k, Lee KY, Park DH. Effects of pH and Nitrogen sources on the Pullulan Production by Aureobasidium pullulans. KSBB J. 11: 497-503 (1996)
  21. Oliva EM, Cirelli AF, de Lederkremer RM. Characterization of a pullulan in Cyttaria darwinii. Carbohydr. Res. 158: 262-267 (1986) https://doi.org/10.1016/0008-6215(86)84025-3
  22. Prasongsuk S, Berhow MA, Dunlap CA, Weisleder D, Leathers TD, Eveleigh DE, Punnapayak H. Pullulan production by tropical isolates of Aureobasidium pullulans. J. Ind. Microbiol. Biotechnol. 34: 55-61 (2007) https://doi.org/10.1007/s10295-006-0163-7
  23. Reis RA, Tischer CA, Gorin PA, Iacomini M. A new pullulan and a branched (1→3)-,(1→6)-linked β-glucan from the lichenised ascomycete Teloschistes flavicans. FEMS Microbiol. Lett. 210: 1-5 (2002) https://doi.org/10.1016/S0378-1097(02)00554-2
  24. Ronen M, Guterman H, Shabtai Y. Monitoring and control of pullulan production using vision sensor. J. Biochem. Biophys. Methods. 51: 243-249 (2002) https://doi.org/10.1016/S0165-022X(01)00182-8
  25. Ryu SD, Heo MG, Yoon KS. Factors affecting physical properties of solid sunscreen using response surface methodology. J. Soc. Cos-met. Scientists Korea. 45: 237-254 (2019)
  26. Seveiri RM, Hamidi M, Delattre C, Sedighian H, Pierre G, Rahmani B, Darzi S, Brasselet C, Karimitabar F, Razaghpoor A. Characterization and prospective applications of the exopolysaccharides produced by Rhodosporidium babjevae. Adv. Pharm. Bull. 10: 254-263 (2020) https://doi.org/10.34172/apb.2020.030
  27. Sheng L, Tong Q, Ma M. Why sucrose is the most suitable substrate for pullulan fermentation by Aureobasidium pullulans CGMCC1234? Enzyme Microb. Technol 92: 49-55 (2016) https://doi.org/10.1016/j.enzmictec.2016.06.016
  28. Shin YC, Han JK, Kim YH, Lee HS, Buyn SM. Inhibition Effect of Sugar Concentrations on the Cell Growth and the Pullulan production of Aureobasidium pullulans. Misainmurhag Hoiji. 12: 360-366 (1987a)
  29. Shin YC, Kim YH, Lee HS, Kim YN, Byun SM. Production of pullulan by a fed-batch fermentation. Biotechnol. Lett 9: 621-624 (1987b) https://doi.org/10.1007/BF01033198
  30. Shin YC, Kim YH, Lee HS, Cho SJ, Byun SM. Production of exopolysaccharide pullulan from inulin by a mixed culture of Aureobasidium pullulans and Kluyveromyces fragilis. Biotechnol. Bioeng. 33: 129-133 (1989) https://doi.org/10.1002/bit.260330117
  31. Shin YC, Byun SM. Effect of pH on the elaboration of pullulan and the morphology of Aureobasidium pullulans. Hanguk Misaengmul Saengmyong Konghakhoe Chi. 19: 193-199 (1991)
  32. Singh R, Gaur R, Pandey PK, Jamal F, Pandey LK, Singh S, Kewat HK, Tiwari S, Biswas P, Gaur MK. A novel media optimized for production of pullulan in flask type fermentation system. Int. J. Curr. Microbiol. Appl. Sci. 7: 53-61 (2018a)
  33. Singh R, Kaur N. Biochemical and molecular characterization of a new pullulan producer Rhodosporidium paludigenum PUPY-06. J. appl. 6: 28-37 (2018b)
  34. Singh RS, Saini GK, Kennedy JF. Pullulan: microbial sources, production and applications. Carbohydr. Polym. 73: 515-531 (2008) https://doi.org/10.1016/j.carbpol.2008.01.003
  35. Singh RS, Saini GK, Kennedy JF. Downstream processing and characterization of pullulan from a novel colour variant strain of Aureobasidium pullulans FB-1. Carbohydr. Polym. 78: 89-94 (2009a) https://doi.org/10.1016/j.carbpol.2009.03.040
  36. Singh RS, Singh H, Saini GK. Response Surface Optimization of the Critical Medium Components for Pullulan Production by Aureobasidium pullulans FB-1. Appl. Biochem. Biotechol. 152: 42-53 (2009b) https://doi.org/10.1007/s12010-008-8180-9
  37. Son CW, Lee JW, Chung CH, Nam SW, Jo KI, Yang JK. Continuous Production of Pullulan by Aureobasidium pullulans HP-2001with Feeding of High Concentration of Sucrose. J. Microbiol. Biotechnol. 16: 374-380 (2006)
  38. Waksman N, de Lederkremer RM, Cerezo AS. The structure of an α-D-glucan from Cyttaria harioti Fischer. Carbohydr. Res. 59: 505-515 (1977) https://doi.org/10.1016/S0008-6215(00)83187-0
  39. Wang D, Yu X, Gongyuan W. Pullulan production and physiological characteristics of Aureobasidium pullulans under acid stress. Appl. Microbiol. Biotechnol. 97: 8069-8077 (2013) https://doi.org/10.1007/s00253-013-5094-4
  40. Yang SN, Baek SW, Kim NK. Effect of aeration and agitation rates on pullulan production. Korean J. Chem. Eng. 38: 556-559 (2000)
  41. Yim MH, Son HS, Chung NH, Yang HC. Studies on the production of pullulan by Aureobasidium pullulans. J. Microbiol. Biotechnol. 12: 219-219 (1984)
  42. Zajic J, LeDuy A. Pullulan in Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc. Boboken, NJ, USA. pp. 643-652 (1977).