DOI QR코드

DOI QR Code

Inhibition of COX-2 Impairs Colon Cancer Liver Metastasis through Reduced Stromal Cell Reaction

  • Herrero, Alba (Department of Cell Biology and Histology, University of the Basque Country, School of Medicine and Nursing) ;
  • Benedicto, Aitor (Department of Cell Biology and Histology, University of the Basque Country, School of Medicine and Nursing) ;
  • Romayor, Irene (Department of Cell Biology and Histology, University of the Basque Country, School of Medicine and Nursing) ;
  • Olaso, Elvira (Department of Cell Biology and Histology, University of the Basque Country, School of Medicine and Nursing) ;
  • Arteta, Beatriz (Department of Cell Biology and Histology, University of the Basque Country, School of Medicine and Nursing)
  • Received : 2020.09.13
  • Accepted : 2020.12.09
  • Published : 2021.05.01

Abstract

Liver colonization is initiated through the interplay between tumor cells and adhesion molecules present in liver sinusoidal endothelial cells (LSECs). This crosstalk stimulates tumor COX-2 upregulation and PGE2 secretion. To elucidate the role of the LSEC intercellular adhesion molecule-1 (ICAM-1) in the prometastatic response exerted by tumor and stromal COX-2, we utilized celecoxib (CLX) as a COX-2 inhibitory agent. We analyzed the in vitro proliferative and secretory responses of murine C26 colorectal cancer (CRC) cells to soluble ICAM-1 (sICAM-1), cultured alone or with LSECs, and their effect on LSEC and hepatic stellate cell (HSC) migration and in vivo liver metastasis. CLX reduced sICAM-1-stimulated COX-2 activation and PGE2 secretion in C26 cells cultured alone or cocultured with LSECs. Moreover, CLX abrogated sICAM-1-induced C26 cell proliferation and C26 secretion of promigratory factors for LSECs and HSCs. Interestingly, CLX reduced the protumoral response of HSC, reducing their migratory potential when stimulated with C26 secretomes and impairing their secretion of chemotactic factors for LSECs and C26 cells and proliferative factors for C26 cells. In vivo, CLX abrogated the prometastatic ability of sICAM-1-activated C26 cells while reducing liver metastasis. COX-2 inhibition blocked the creation of a favorable tumor microenvironment (TME) by hindering the intratumoral recruitment of activated HSCs and macrophages in addition to the accumulation of fibrillar collagen. These results point to COX-2 being a key modulator of processes initiated by host ICAM-1 during tumor cell/LSEC/HSC crosstalk, leading to the creation of a prometastatic TME in the liver.

Keywords

References

  1. Arteta, B., Lasuen, N., Lopategi, A., Sveinbjornsson, B., Smedsrod, B. and Vidal-Vanaclocha, F. (2010) Colon carcinoma cell interaction with liver sinusoidal endothelium inhibits organ-specific antitumor immunity through interleukin-1-induced mannose receptor in mice. Hepatology 51, 2172-2182. https://doi.org/10.1002/hep.23590
  2. Benedicto, A., Marquez, J., Herrero, A., Olaso, E., Kolaczkowska, E. and Arteta, B. (2017) Decreased expression of the β2 integrin on tumor cells is associated with a reduction in liver metastasis of colorectal cancer in mice. BMC Cancer 17, 827. https://doi.org/10.1186/s12885-017-3823-2
  3. Benedicto, A., Romayor, I. and Arteta, B. (2018) CXCR4 receptor blockage reduces the contribution of tumor and stromal cells to the metastatic growth in the liver. Oncol. Rep. 39, 2022-2030.
  4. Benedicto, A., Herrero, A., Romayor, I., Marquez, J., Smedsrod, B., Olaso, E. and Arteta, B. (2019) Liver sinusoidal endothelial cell ICAM-1 mediated tumor/endothelial crosstalk drives the development of liver metastasis by initiating inflammatory and angiogenic responses. Sci. Rep. 9, 13111. https://doi.org/10.1038/s41598-019-49473-7
  5. Bhattacharya, R., Fan, F., Wang, R., Ye, X., Xia, L., Boulbes, D. and Ellis, L. M. (2017) Intracrine VEGF signalling mediates colorectal cancer cell migration and invasion. Br. J. Cancer 117, 848-855. https://doi.org/10.1038/bjc.2017.238
  6. Brodt, P. (2016) Role of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clin. Cancer Res. 22, 5971-5982. https://doi.org/10.1158/1078-0432.CCR-16-0460
  7. Burga, R. A., Thorn, M., Point, G. R., Guha, P., Nguyen, C. T., Licata, L. A., DeMatteo, R. P., Ayala, A., Joseph Espat, N., Junghans, R. P. and Katz, S. C. (2015) Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the antitumor efficacy of anti-CEA CAR-T. Cancer Immunol. Immunother. 64, 817-829. https://doi.org/10.1007/s00262-015-1692-6
  8. Chen, W. S., Wei, S. J., Liu, J. M., Hsiao, M., Kou-Lin, J. and Yang, W. K. (2001) Tumor invasiveness and liver metastasis of colon cancer cells correlated with cyclooxygenase-2 (COX-2) expression and inhibited by a COX-2-selective inhibitor, etodolac. Int. J. Cancer 91, 894-899. https://doi.org/10.1002/1097-0215(200102)9999:9999<894::AID-IJC1146>3.0.CO;2-#
  9. Cianchi, F., Cortesini, C., Schiavone, N., Perna, F., Magnelli, L., Fanti, E., Bani, D., Messerini, L., Fabbroni, V., Perigli, G., Capaccioli, S. and Masini, E. (2005) The role of cyclooxygenase-2 in mediating the effects of histamine on cell proliferation and vascular endothelial growth factor production in colorectal cancer. Clin. Cancer Res. 11, 6807-6815. https://doi.org/10.1158/1078-0432.CCR-05-0675
  10. Fujita, M., Kohanbash, G., Fellows-Mayle, W., Hamilton, R. L., Komohara, Y., Decker, S. A., Ohlfest, J. R. and Okada, H. (2011) COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 71, 2664-2674. https://doi.org/10.1158/0008-5472.CAN-10-3055
  11. Greenhough, A., Smartt, H. J. M., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C. and Kaidi, A. (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30, 377-386. https://doi.org/10.1093/carcin/bgp014
  12. Horikawa, N., Abiko, K., Matsumura, N., Hamanishi, J., Baba, T., Yamaguchi, K., Yoshioka, Y., Koshiyama, M. and Konishi, I. (2017) Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin. Cancer Res. 23, 587-599. https://doi.org/10.1158/1078-0432.CCR-16-0387
  13. Jana, S., Chatterjee, K., Ray, A. K., DasMahapatra, P. and Swarnakar, S. (2016) Regulation of matrix metalloproteinase-2 activity by COX-2-PGE2-pAKT axis promotes angiogenesis in endometriosis. PLoS ONE 11, e0163540. https://doi.org/10.1371/journal.pone.0163540
  14. Keirsse, J., Van Damme, H., Geeraerts, X., Beschin, A., Raes, G. and Van Ginderachter, J. A. (2018) The role of hepatic macrophages in liver metastasis. Cell. Immunol. 330, 202-215. https://doi.org/10.1016/j.cellimm.2018.03.010
  15. Khan, G. A., Bhagat, S. and Alam, M. I. (2019) PGE 2 -induced migration of human brain endothelial cell is mediated though protein kinase A in cooperation of EP receptors. J. Leukoc. Biol. 105, 705-717. https://doi.org/10.1002/JLB.2A0918-361R
  16. Khatib, A. M., Fallavollita, L., Wancewicz, E. V., Monia, B. P. and Brodt, P. (2002) Inhibition of hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides blocks colorectal carcinoma liver metastasis. Cancer Res. 62, 5393-5398.
  17. Li, X., Bu, W., Meng, L., Liu, X., Wang, S., Jiang, L., Ren, M., Fan, Y. and Sun, H. (2019) CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC. Exp. Cell Res. 378, 131-138. https://doi.org/10.1016/j.yexcr.2019.03.013
  18. Lin, Q., Ren, L., Jian, M., Xu, P., Li, J., Zheng, P., Feng, Q., Yang, L., Ji, M., Wei, Y. and Xu, J. (2019) The mechanism of the premetastatic niche facilitating colorectal cancer liver metastasis generated from myeloid-derived suppressor cells induced by the S1PR1-STAT3 signaling pathway. Cell Death Dis. 10, 693. https://doi.org/10.1038/s41419-019-1922-5
  19. Liu, Y., Lui, E. L. H., Friedman, S. L., Li, L., Ye, T., Chen, Y., Poon, R. T., Wo, J., Kok, T. W. and Fan, S. T. (2009) PTK787/ZK22258 attenuates stellate cell activation and hepatic fibrosis in vivo by inhibiting VEGF signaling. Lab. Investig. 89, 209-221. https://doi.org/10.1038/labinvest.2008.127
  20. Ma, F., Zhang, B., Ji, S., Hu, H., Kong, Y., Hua, Y. and Luo, S. (2019) Hypoxic macrophage-derived VEGF promotes proliferation and invasion of gastric cancer cells. Dig. Dis. Sci. 64, 3154-3163. https://doi.org/10.1007/s10620-019-05656-w
  21. Nagatsuka, I., Yamada, N., Shimizu, S., Ohira, M., Nishino, H., Seki, S. and Hirakawa, K. (2002) Inhibitory effect of a selective cyclooxygenase-2 inhibitor on liver metastasis of colon cancer. Int. J. Cancer 100, 515-519. https://doi.org/10.1002/ijc.10508
  22. Narisawa, T., Kusaka, H., Yamazaki, Y., Takahashi, M., Koyama, H., Koyama, K., Fukaura, Y. and Wakizaka, A. (1990) Relationship between blood plasma prostaglandin E2 and liver and lung metastases in colorectal cancer. Dis. Colon Rectum 33, 840-845. https://doi.org/10.1007/BF02051919
  23. Obermajer, N., Muthuswamy, R., Lesnock, J., Edwards, R.P. and Kalinski, P. (2011) Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118, 5498-5505. https://doi.org/10.1182/blood-2011-07-365825
  24. Olaso, E., Santisteban, A., Bidaurrazaga, J., Gressner, A. M., Rosenbaum, J. and Vidal-Vanaclocha, F. (1997) Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology 26, 634-642. https://doi.org/10.1053/jhep.1997.v26.pm0009303493
  25. Olaso, E., Salado, C., Egilegor, E., Gutierrez, V., Santisteban, A., Sancho-Bru, P., Friedman, S. L. and Vidal-Vanaclocha, F. (2003) Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 37, 674-685. https://doi.org/10.1053/jhep.2003.50068
  26. Paik, Y. H., Kim, J. K., Lee, J. I., Kang, S. H., Kim, D. Y., An, S. H., Lee, S. J., Lee, D. K., Han, K. H., Chon, C. Y., Lee, S. I., Lee, K. S. and Brenner, D. A. (2009) Celecoxib induces hepatic stellate cell apoptosis through inhibition of Akt activation and suppresses hepatic fibrosis in rats. Gut 58, 1517-1527. https://doi.org/10.1136/gut.2008.157420
  27. Puche, J. E., Lee, Y. A., Jiao, J., Aloman, C., Fiel, M. I., Munoz, U., Kraus, T., Lee, T., Yee, H. F. and Friedman, S. L. (2013) A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice. Hepatology 57, 339-350. https://doi.org/10.1002/hep.26053
  28. Raza, A., Franklin, M. J. and Dudek, A. Z. (2010) Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am. J. Hematol. 85, 593-598. https://doi.org/10.1002/ajh.21745
  29. Shoji, T., Konno, H., Tanaka, T., Sakaguchi, T., Sunayama, K., Baba, M., Kamiya, K., Ohta, M., Kaneko, T., Igarashi, A. and Nakamura, S. (2003) Orthotopic implantation of a colon cancer xenograft induces high expression of cyclooxygenase-2. Cancer Lett. 195, 235-241. https://doi.org/10.1016/S0304-3835(02)00108-8
  30. Siegel, R. L., Miller, K. D. and Jemal, A. (2019) Cancer statistics, 2019. CA. Cancer J. Clin. 69, 7-34. https://doi.org/10.3322/caac.21551
  31. Smedsrod, B. and Pertoft, H. (1985) Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence. J. Leukoc. Biol. 38, 213-230. https://doi.org/10.1002/jlb.38.2.213
  32. Toomey, D. P., Murphy, J. F. and Conlon, K. C. (2009) COX-2, vegf and tumour angiogenesis. Surgeon 7, 174-180. https://doi.org/10.1016/S1479-666X(09)80042-5
  33. Valcarcel, M., Arteta, B., Jaureguibeitia, A., Lopategi, A., Martinez, I., Mendoza, L., Muruzabal, F. J., Salado, C. and Vidal-Vanaclocha, F. (2008) Three-dimensional growth as multicellular spheroid activates the proangiogenic phenotype of colorectal carcinoma cells via LFA-1-dependent VEGF: implications on hepatic micrometastasis. J. Transl. Med. 6, 57. https://doi.org/10.1186/1479-5876-6-57
  34. van der Pool, A. E. M., Damhuis, R. A., Ijzermans, J. N. M., de Wilt, J. H. W., Eggermont, A. M. M., Kranse, R. and Verhoef, C. (2012) Trends in incidence, treatment and survival of patients with stage IV colorectal cancer: a population-based series. Colorectal Dis. 14, 56-61. https://doi.org/10.1111/j.1463-1318.2010.02539.x
  35. Veltman, J. D., Lambers, M. E., van Nimwegen, M., Hendriks, R. W., Hoogsteden, H. C., Aerts, J. G. and Hegmans, J. P. (2010) COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer 10, 464. https://doi.org/10.1186/1471-2407-10-464
  36. Vetsika, E. K., Koukos, A. and Kotsakis, A. (2019) Myeloid-derived suppressor cells: major figures that shape the immunosuppressive and angiogenic network in cancer. Cells 8, 1647. https://doi.org/10.3390/cells8121647
  37. Vidal-Vanaclocha, F. (2011) The liver prometastatic reaction of cancer patients: Implications for microenvironment-dependent colon cancer gene regulation. Cancer Microenviron. 4, 163-180. https://doi.org/10.1007/s12307-011-0084-5
  38. Volpes, R., van den Oord, J. J. and Desmet, V. J. (1990) Immunohistochemical study of adhesion molecules in liver inflammation. Hepatology 12, 59-65. https://doi.org/10.1002/hep.1840120110
  39. Xu, L., Stevens, J., Hilton, M. B., Seaman, S., Conrads, T. P., Veenstra, T. D., Logsdon, D., Morris, H., Swing, D. A., Patel, N. L., Kalen, J., Haines, D. C., Zudaire, E. and St Croix, B. (2014) COX-2 inhibition potentiates antiangiogenic cancer therapy and prevents metastasis in preclinical models. Sci. Transl. Med. 6, 242ra84. https://doi.org/10.1126/scitranslmed.3008455
  40. Xu, Y., Zhao, W., Xu, J., Li, J., Hong, Z., Yin, Z. and Wang, X. (2016) Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2. Oncotarget 7, 8866-8878. https://doi.org/10.18632/oncotarget.6839
  41. Xu, Y., Fang, F., Jiao, H., Zheng, X., Huang, L., Yi, X. and Zhao, W. (2019) Activated hepatic stellate cells regulate MDSC migration through the SDF-1/CXCR4 axis in an orthotopic mouse model of hepatocellular carcinoma. Cancer Immunol. Immunother. 68, 1959-1969. https://doi.org/10.1007/s00262-019-02414-9
  42. Yao, M., Lam, E. C., Kelly, C. R., Zhou, W. and Wolfe, M. M. (2004) Cyclooxygenase-2 selective inhibition with NS-398 suppresses proliferation and invasiveness and delays liver metastasis in colorectal cancer. Br. J. Cancer 90, 712-719. https://doi.org/10.1038/sj.bjc.6601489
  43. Yu, J. R., Wu, Y. J., Qin, Q., Lu, K. Z., Yan, S., Liu, X. S. and Zheng, S. S. (2005) Expression of cyclooxygenase-2 in gastric cancer and its relation to liver metastasis and long-term prognosis. World J. Gastroenterol. 11, 4908-4911. https://doi.org/10.3748/wjg.v11.i31.4911
  44. Zhang, F., Xu, M., Yin, X., Guo, H., Zhang, B., Wang, Y., Xiao, J., Zou, X., Zhang, M. and Zhuge, Y. (2020) TWEAK promotes hepatic stellate cell migration through activating EGFR/Src and PI3K/AKT pathways. Cell Biol. Int. 44, 278-285. https://doi.org/10.1002/cbin.11230

Cited by

  1. Tumor DDR1 deficiency reduces liver metastasis by colon carcinoma and impairs stromal reaction vol.320, pp.6, 2021, https://doi.org/10.1152/ajpgi.00078.2021
  2. Neuropilin-1: A feasible link between liver pathologies and COVID-19 vol.27, pp.24, 2021, https://doi.org/10.3748/wjg.v27.i24.3516
  3. Review: Challenges of In Vitro CAF Modelling in Liver Cancers vol.13, pp.23, 2021, https://doi.org/10.3390/cancers13235914