DOI QR코드

DOI QR Code

3'-O-Acetyl-24-Epi-7,8-Didehydrocimigenol-3-O-β-D-Xylopryranoside Decreases Amyloid Beta Production in Amyloid Precursor Protein-Transfected HeLa Cells

  • Lee, Sang-Bin (Department of Integrative Biological Sciences and Industry, Sejong University) ;
  • Park, Ansun (Natural Product Research Center, Korea Institute of Science and Technology) ;
  • Ma, Chi Thanh (Department of Pharmacognosy, University of Medicine and Pharmacy at Ho Chi Minh City) ;
  • Kim, Young Ho (College of Pharmacy, Chungnam National University) ;
  • Yang, Hyun Ok (Department of Integrative Biological Sciences and Industry, Sejong University)
  • Received : 2020.11.02
  • Accepted : 2020.12.17
  • Published : 2021.05.01

Abstract

Extracellular beta amyloid (Aβ) plaques are the neuropathological hallmarks of Alzheimer's disease (AD). Accordingly, reducing Aβ levels is considered a promising strategy for AD prevention. 3'-O-acetyl-24-epi-7,8-didehydrocimigenol-3-O-β-D-xylopryranoside significantly decreased the Aβ production and this effect was accompanied with reduced sAPPβ production known as a soluble ectodomain APP fragment through β-secretases in HeLa cells overexpressing amyloid precursor proteins (APPs). This compound also increased the level of sAPPα, which is a proteolytic fragment of APP by α-secretases. In addition, 3'-O-acetyl-24-epi-7,8-didehydrocimigenol-3-O-β-D-xylopryranoside decreased the protein level of β-secretases, but the protein levels of A disintegrin and metalloproteinase (ADAM) family, especially ADAM10 and ADAM17, are increased. Thus, 3'-O-acetyl-24-epi-7,8-didehydrocimigenol-3-O-β-D-xylopryranoside could be useful in the development of AD treatment in the aspect of amyloid pathology.

Keywords

References

  1. Agostinho, P., Cunha, R. A. and Oliveira, C. (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease. Curr. Pharm. Des. 16, 2766-2778. https://doi.org/10.2174/138161210793176572
  2. Chen, X., Xu, B., Nie, L., He, K., Zhou, L., Huang, X., Spencer, P., Yang, X. and Liu, J. (2019) Flavanol-rich lychee fruit extract substantially reduces progressive cognitive and molecular deficits in a triple-transgenic animal model of Alzheimer disease. Nutr. Neurosci. doi: 10.1080/1028415X.2019.1673527 [Online ahead of print].
  3. Gu, M. Y., Chun, Y. S., Zhao, D., Ryu, S. Y. and Yang, H. O. (2018) Glycyrrhiza uralensis and semilicoisoflavone B reduce Aβ secretion by increasing PPARγ expression and inhibiting STAT3 phosphorylation to inhibit BACE1 expression. Mol. Nutr. Food. Res. 62, e1700633.
  4. Hardy, J. and Orr, H. (2006) The genetics of neurodegenerative diseases. J. Neurochem. 97, 1690-1699. https://doi.org/10.1111/j.1471-4159.2006.03979.x
  5. Karran, E. and De Strooper, B. (2016) The amyloid cascade hypothesis: are we poised for success or failure? J. Neurochem. 139 Suppl 2, 237-252. https://doi.org/10.1111/jnc.13632
  6. Kim, J., Park, Y., Chun, Y. S., Cha, J. W., Kwon, H. C., Oh, M. S., Chung, S. and Yang, H. O. (2015a) Effect of lycoris chejuensis and its active components on experimental models of Alzheimer's disease. J. Agric. Food Chem. 63, 6979-6988. https://doi.org/10.1021/acs.jafc.5b00889
  7. Kim, J. M., Hwang, K. W., Joo, H. B. and Park, S. Y. (2015b) Antiamyloidogenic properties of dryopteris crassirhizoma roots in Alzheimer's disease cellular model. J. Food Biochem. 39, 478-484. https://doi.org/10.1111/jfbc.12156
  8. Kuhn, P. H., Wang, H., Dislich, B., Colombo, A., Zeitschel, U., Ellwart, J. W., Kremmer, E., Rossner, S. and Lichtenthaler, S. F. (2010) ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J. 29, 3020-3032. https://doi.org/10.1038/emboj.2010.167
  9. Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C. and Fahrenholz, F. (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. U.S.A. 96, 3922-3927. https://doi.org/10.1073/pnas.96.7.3922
  10. Lee, J., Cho, E., Kwon, H., Jeon, J., Jung, C. J., Moon, M., Jun, M., Lee, Y. C., Kim, D. H. and Jung, J. W. (2019) The fruit of Crataegus pinnatifida ameliorates memory deficits in beta-amyloid proteininduced Alzheimer's disease mouse model. J. Ethnopharmacol. 243, 112107. https://doi.org/10.1016/j.jep.2019.112107
  11. Lv, C., Yang, F., Qin, R., Qi, Z., Zhou, W. and Lu, J. (2017) Bioactivityguided isolation of chemical constituents against H2O2-induced neurotoxicity on PC12 from Cimicifuga dahurica (Turcz.) Maxim. Bioorg. Med. Chem. Lett. 27, 3305-3309. https://doi.org/10.1016/j.bmcl.2017.06.020
  12. Park, S. Y. (2010) Potential therapeutic agents against Alzheimer's disease from natural sources. Arch. Pharm. Res. 33, 1589-1609. https://doi.org/10.1007/s12272-010-1010-y
  13. Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W. and Ferri, C. P. (2013) The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 9, 63-75.e2. https://doi.org/10.1016/j.jalz.2012.11.007
  14. Qin, R., Zhao, Y., Zhao, Y., Zhou, W., Lv, C. and Lu, J. (2016) Polyphenolic compounds with antioxidant potential and neuro-protective effect from Cimicifuga dahurica (Turcz.) Maxim. Fitoterapia 115, 52-56. https://doi.org/10.1016/j.fitote.2016.09.016
  15. Scheltens, P., Blennow, K., Breteler, M. M., de Strooper, B., Frisoni, G. B., Salloway, S. and Van der Flier, W. M. (2016) Alzheimer's disease. Lancet 388, 505-517. https://doi.org/10.1016/S0140-6736(15)01124-1
  16. Thao, N. P., Kim, J. H., Thuy Luyen, B. T., Dat, N. T. and Kim, Y. H. (2017a) In silico investigation of cycloartane triterpene derivatives from Cimicifuga dahurica (Turcz.) Maxim. roots for the development of potent soluble epoxide hydrolase inhibitors. Int. J. Biol. Macromol. 98, 526-534. https://doi.org/10.1016/j.ijbiomac.2017.02.023
  17. Thao, N. P., Lee, Y. S., Luyen, B. T. T., Oanh, H. V., Ali, I., Arooj, M., Koh, Y. S., Yang, S. Y. and Kim, Y. H. (2018) Chemicals from Cimicifuga dahurica and their inhibitory effects on pro-inflammatory cytokine production by LPS-stimulated bone marrow-derived dendritic cells. Nat. Prod. Sci. 24, 194-198. https://doi.org/10.20307/nps.2018.24.3.194
  18. Thao, N. P., Luyen, B. T., Lee, J. S., Kim, J. H. and Kim, Y. H. (2017b) Soluble epoxide hydrolase inhibitors of indolinone alkaloids and phenolic derivatives from Cimicifuga dahurica (Turcz.) Maxim. Bioorg. Med. Chem. Lett. 27, 1874-1879. https://doi.org/10.1016/j.bmcl.2017.02.013
  19. Thao, N. P., Luyen, B. T. T., Lee, J. S., Kim, J. H., Dat, N. T. and Kim, Y. H. (2017c) Inhibition potential of cycloartane-type glycosides from the roots of cimicifuga dahurica against soluble epoxide hydrolase. J. Nat. Prod. 80, 1867-1875. https://doi.org/10.1021/acs.jnatprod.7b00166
  20. Tian, Z., Si, J., Chang, Q., Zhou, L., Chen, S., Xiao, P. and Wu, E. (2007) Antitumor activity and mechanisms of action of total glycosides from aerial part of Cimicifuga dahurica targeted against hepatoma. BMC Cancer 7, 237. https://doi.org/10.1186/1471-2407-7-237
  21. Vargas, L. M., Cerpa, W., Munoz, F. J., Zanlungo, S. and Alvarez, A. R. (2018) Amyloid-beta oligomers synaptotoxicity: the emerging role of EphA4/c-Abl signaling in Alzheimer's disease. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1148-1159. https://doi.org/10.1016/j.bbadis.2018.01.023
  22. Vassar, R., Kovacs, D. M., Yan, R. and Wong, P. C. (2009) The betasecretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential. J. Neurosci. 29, 12787-12794. https://doi.org/10.1523/JNEUROSCI.3657-09.2009
  23. Zhang, L. L., Si, J. Y., Zhang, L. J., Xiao-Wei, H., Lin, L., Li, R. Y., Chen, D. and Cao, L. (2016) Synergistic anti-tumor activity and mechanisms of total glycosides from Cimicifuga dahurica in combination with cisplatin. Chin. J. Integr. Med. doi: 10.1007/s11655-015-2108-3 [Online ahead of print].