References
- C. Lee, M. Jung & S. Park. (2020). Future Warfare for Hyper Connected Era. The Journal of th Convergence on Culture Technology, 6(3), 99-103. DOI : 10.17703/JCCT.2020.6.3.99
- S. H. Kim, S. W. Chey & S. P. Hong. (2019). Development Direction of Defense Weapon System for the 4th Industrial Revolution. Journal of The Korean Society of Industry Convergence, 22(2), 71-79. DOI : 10.21289/KSIC.2019.22.2.71
- S. Park, H. H. Park, H. Ahn & Y. Kim. (2020). Operational Concept and Effectiveness for Aerial Tactical Network in TICN, The Journal of Korean Institute of Communications and Information Sciences, 45(2), 458-466. DOI : 10.7840/kics.2020.45.2.458
- G. Lee et al. (2020). Airborne Relay Network Technology Trend Analysis and Evolution Strategy, The Journal of Korean Institute of Next Generation Computing, 16(5), 73-90.
- H. Baek & J. Lim. (2018). Design of Future UAV-Relay Tactical Data Link for Reliable UAV Control and Situational Awareness, IEEE Communications Magazine, 56(10), 144-150. DOI : 10.1109/MCOM.2018.1700259
- J. Chil, G. Lee, S. Lee & B. Roh. (2018). Operation Scheme of Aerial Relay Networks for Improving Degree of Situation Awareness in Future Tactical Networks, Journal of Information Technology and Architecture, 15(4), 509-520. https://doi.org/10.22865/JITA.2018.15.4.509
- Y. H. Cho. (2019). Phased Array Antenna Technology for Hyper-connected Future Warfare, Korea Institute of Information Technology Magazine, 17(1), 11-20.
- S. C. Yeo, B. W. Kang, K. H. Bae & C. B. Yoon (2020). Study on Data-Link Antenna System for UAV, Journal of the Korean Institute of Electronic Communication Sciences, 15(1), 9-14. DOI : 10.13067/JKIECS.2020.15.1.9
- J. S. Park et al. (2020). Coverage Prediction for Aerial Relay systems based on the Common Data Link using ITU Models, Journal of the Korean Institute of Electronic Communication Sciences, 15(1), 21-30. DOI : 10.13067/JKIECS.2020.15.1.21
- J. H. Byun et al. (2021). Learning-Backoff based Wireless Channel Access for Tactical Airborne Networks, Journal of Convergence for Information Technology, 11(1), 12-19. DOI : 10.22156/CS4SMB.2021.11.01.012
- K. Kwak et al. (2014). Airborne Network Evaluation: Challenges and High Fidelity Emuation Solution, IEEE Communications Magazine, 52(10), 30-36. DOI : 10.1109/MCOM.2014.6917398
- Joint Chiefs of Staff. (2015). Joint Concept for Command and Control of the Joint Aerial layer Network. Washington D. C.
- Wikipedia. (15. Feb. 2021). Battlefield Airborne Communications Node. https://en.wikipedia.org/wiki/Battlefield_Airborne_Communications_Node#BACN_as_a_concept
- M. A. Khan, I. M. Qureshi & F. Khanzada, (2019). A Hybrid Communication Scheme for Efficent and Low-Cost Deployment of Future Ad-Hoc Network(FANET), drones, 1-20. DOI : 10.3390/drones3010016
- X. Li, F. Hu, J. Qi & S. Kumar (2019). Systematic Medium Access Control in Hierarchical Airborne Networks With Multibeam and Single-beam Antennas, IEEE Transactions on Aerospace and Electronic Systems, 55(2), 706-717. DOI : 10.1109/TAES.2018.2864468
- L. Zhang, L. Hu, et al. (2020). Enhanced OLSR routing for airborne networks with multi-beam directional antennas, Ad Hoc Networks, 102, 1-13. DOI : 10.1016/j.adhoc.2020.102116
- B. J. Ahn & S. Y. Jo. (2019). A Study on the Development of Army TIGER System 4.0 Environmental Command and Control Communication System in Korea Army, Defense and Technology, (479), 76-83.
- H. Han, (2020). Analysis of the Status of Basic Industries in Military Drone, The Journal of the Convergence on Culture Technology, 6(4), 493-498. DOI : 10.17703/JCCT.2020.6.4.493
- Wikipedia. (5. Mar. 2021). Boeing AH-64 Apache. https://en.wikipedia.org/wiki/Boeing_AH-64_Apache
- Wikipedia. (20. Dec. 2020). Northrop Grumman RQ-4 Global Hawk. https://en.wikipedia.org/wiki/Northrop_Grumman_RQ-4_Global_Hawk
- Wikipedia. (2. Jan. 2021). Lapse rate. https://en.wikipedia.org/wiki/Lapse_rate
- Wikipedia. (9. Mar. 2021). KAI KUH-1 Surion. https://en.wikipedia.org/wiki/KAI_KUH-1_Surion
- Wikipedia. (18. Feb. 2021). IAI Heron. https://en.wikipedia.org/wiki/IAI_Heron