DOI QR코드

DOI QR Code

Experimental Implementation of Digital Twin Simulation for Physical System Optimization

물리시스템 최적화를 위한 디지털 트윈 시뮬레이션의 실험적 구현

  • Kim, Kyung-Ihl (Division of Convergence Management, Korea National University of Transportation)
  • 김경일 (한국교통대학교 융합경영전공)
  • Received : 2021.03.08
  • Accepted : 2021.04.20
  • Published : 2021.04.28

Abstract

This study proposes a digital twin implementation method through simulation so that the manufacturing process can be optimized in a manual manufacturing site. The scope of the proposal is a knowledge management mechanism that collects manual motion with a sensor and optimizes the manufacturing process with repetitive experimental data for motion recognition. In order to achieve the research purpose, a simulation of the distribution site was conducted, and a plan to create an optimized digital twin was prepared by repeatedly experiencing the work simulation based on the basic knowledge expressed by the worker's experience. As a result of the experiment, it was found that it is possible to continuously improve the manufacturing process by transmitting the result of configuring the optimized resources to the physical system by generating the characteristics of the work space configuration and working step within a faster time with the simulation that creates the digital twin.

본 연구는 수작업으로 이루어진 제조현장에서 제조 프로세스를 최적화할 수 있도록 시뮬레이션을 통한 디지털 트윈 구현 방안을 제안하고자 한다. 수작업 모션을 센서로 수집하고 동작 인식에 대하여 반복적인 실험데이터로 제조 프로세스를 최적화하는 지식관리메커니즘을 제안 범위로 한다. 연구목적 달성을 위하여 물류현장 모의실험을 실시하였는데, 작업자의 경험으로 나타난 기초적 지식에 작업시뮬레이션을 반복 경험하게 함으로써 최적화된 디지털 트윈을 생성할 수 있는 방안을 마련하였다. 실험결과, 디지털 트윈을 생성하는 시뮬레이션으로 보다 빠른 시간내에 작업공간 구성과 작업 특성을 생성하여 최적화된 자원을 구성한 결과를 물리시스템으로 전송함으로써 제조 프로세스의 지속적 개선이 가능한 것으로 파악되었다.

Keywords

References

  1. F. Tao & M. Zhang. (2017). Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing. IEEE Access 5: 20418-20427. DOI : 10.1109/ACCESS.2017.2756069.
  2. B. G. Thiede, S. Posselt , S. Kauffeld & C. Herrmann. (2017). Enhancing Learning Experience in Physical Action-Orientated Learning Factories Using a Virtually Extended Environment and Serious Gaming Approaches. Procedia Manufacturing, 9, 238-244. DOI : 10.1016/j.promfg.2017.04.042.
  3. Y. Lu, T. Peng & X. Xu. (2019). Energy-efficient cyber-physical production network: architecture and technologies, Computing and Industrial Engineering. 129, 56-66. DOI : 10.1016/j.cie.2019.01.025.
  4. M. Schluse, M. Priggemeyer, L. Atorf & J. Rossmann. (2018). Experimentable digital twins streamlining simulation-based systems engineering for industry 4.0, IEEE Trans. Industrial Informations. 14. 1722-1731. DOI : 10.1109/TII.2018.2804917.
  5. Blender. (2015). Home of the Blender project - Free and Open 3D Creation Software. (Online). https://www.blender.org/
  6. D. M. Battini, F. Faccio, A. Persona & F. Sgarbossa. (2011). New Methodological Framework to Improve Productivity and Ergonomics in Assembly System Design." International Journal of Industrial Ergonomics, 41(1), 30-42. DOI : 10.1016/j.ergon.2010.12.001.
  7. M. Rietzler, F. Geiselhart, J. Thomas, & E. Rukzio. (2016). FusionKit: A Generic Toolkit for Skeleton, Marker and Rigid-Body Tracking. In Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems - EICS '16, 73-84. New York, USA: ACM. DOI : 10.1145/2933242.2933263
  8. D. Park, M. Choi & D. Yang, (2020), A Study on a framework for digital Twin management system applicable to smart factory, Journal of convergence for information technology, 10(9), 1-7. DOI : 10.22156/CS4SMB.2020.10.09.001.
  9. S. Herath, M. Harandi & F. Porikli. (2017). Going Deeper into Action Recognition: A Survey. Journal of Image and Vision Computing. 60. 4-21. DOI : 10.1016/j.imavis.2017.01.010.
  10. G. Pintzos, N. Nikolakis, K. Alexopoulos & G. Chryssolouris. (2016). Motion Parameters Identification for the Authoring of Manual Tasks in Digital Human Simulations: An Approach Using Semantic Modelling. Procedia CIRP. 41. 752-758. DOI : 10.1016/j.procir.2015.12.077.
  11. M. Manns & N. A. A. Martin. (2015). Improving A Walk Trajectories with B-Splines and Motion Capture for Manual Assembly Verification. Procedia CIRP. 33. 364-369. DOI : 10.1016/j.procir.2015.06.083.
  12. E. Herrmann, M. Manns, H. Du, S. Hosseini & K. Fischer. (2017). Accelerating Statistical Human Motion Synthesis Using Space Partitioning Data Structures. Computer animation & Virtual worlds. 28. e1780. DOI : 10.1002/cav.1780.
  13. J. Min & J. Chai. (2012). Motion Graphs++: A Compact Generative Model for Semantic Motion Analysis and Synthesis. ACM Transactions on Graphics, 31(6), 12. DOI : 10.1145/2366145.2366172.